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Abstract 

 
Neuro-fuzzy systems have been used for robot navigation applications because of their ability to 
exert human like expertise and to utilize acquired knowledge to develop autonomous navigation 
strategies. In this paper, neuro-fuzzy based system is proposed for reactive navigation of a 
mobile robot using behavior based control. The proposed algorithm uses discrete sampling based 
optimal training of neural network. With a view to ascertain the efficacy of proposed system; the 
proposed neuro-fuzzy system’s performance is compared to that of neural and fuzzy based 
approaches. Simulation results along with detailed behavior analysis show effectiveness of our 
algorithm in all kind of obstacle environments. 
 
Keywords: Reactive Navigation, Mobile Robot, Neural Network, Behavior Analysis, Discrete 
Sampling 

 
 
1. INTRODUCTION 

Autonomous robot navigation means the ability of a robot to move purposefully and without 
human intervention in environments that have not been specifically engineered for it [1]. 
Autonomous navigation requires a number of heterogeneous capabilities like ability to reach a 
given location in real time to unexpected events, to determine the robot's position; and to adapt to 
the changes in the environment. For a mobile robot to navigate automatically and rapidly, an 
important factor is to identify and classify mobile robots' currently perceptual environment [1]. The 
general theory for mobile robotics navigation is based on a following idea: robot must Sense the 
known world, be able to Plan its operations and then Act based on the model. 
 
In spite of impressive advances in the field of autonomous robotics in recent years, it is still the 
area of an active research because of uncertainties involved due to unknown environments in 
real world scenarios. These uncertainties are due to following reasons [1]: no information or less 
information about a prior knowledge of an environment, lack of perceptually acquired information, 
limited range, adverse observation conditions, complex and unpredictable dynamics. It is also 
required that the behavior of the robot must be reactive to dynamic aspects of the unknown 
environments and must be able to generate robust behavior in the face of uncertain sensors, 
unpredictable environments and changing scenario.  
 
Many approaches have been proposed to solve the above mentioned challenges for autonomous 
robot navigation. Some of the approaches focus on path planning methods [2], few approaches 
use potential field [3] in which the robot-motion reaction is determined by the resultant virtual 
force. Several other methods have been used like statistical methods, Partially Observable 
Markov Decision Process (POMDP) [4] and reinforcement learning schemes [5].  In last few 
years, research in the domain is more focused with neural and fuzzy based artificial intelligence 
based approaches because of their ability to mimic human expertise.        
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Humans have a remarkable capability to learn and perform a wide variety of physical and mental 
tasks via generalization of perceived knowledge.  Neural network based approaches are used in 
robot navigation applications because neural network learns the humanoid expertise and then 
tries to mimic them by implementing in environment which may be similar or even different than 
used in its training (i.e. generalization). The attractive potential force attracts the robot toward the 
target configuration, while repulsive potential forces push it away from obstacles.  The mobile 
robot is considered moving under the influence of resultant artificial potential field. The advantage 
of neural based approach lies in the learning capacity of the neural network. Performance of 
neural based system depends upon the effective training of its adjustable parameters (synaptic 
weights and bias parameters). Dahm et al. [6] have introduced a neural field based approach on 
robot ARNOLD. The approach was described by non linear competitive dynamical system. 
However, kinematics constraints were not considered for activation of set of artificial neurons. 
Zalama et. al. [7] have proposed reactive behavioral navigation of mobile robot using competitive 
neural network. The authors described various interconnected modules to generate wheel 
velocity using neural network. However, in such mechanisms many times learning convergence is 
very slow and generalization is not always satisfactory. A neural dynamics based architecture 
proposed by Yang and Meng [8]-[ 9]  have discussed  to reduce the  computational complexity by 
avoiding learning procedures and also stability has been proven by lyapunov function and 
qualitative analysis. However, biologically inspired this neural method did not considered sensor 
information fusion and behavior combination.  Some of earlier models are not found practical as 
they assumed that the whole workspace is definitely known considering only static environment.  
Humans’ capability to perform various tasks without any explicit measurements or computations 
is mimicked by fuzzy logic by providing formal methodology for representing and implementing 
the human expert's heuristic knowledge and perception based actions. Fuzzy logic based many 
approaches have been investigated in past years for controlling a mobile robot because of its 
capability to make inferences under uncertainty [10]. Artificial potential field approach has been 
proposed by Khatib[11] that  discussed  behavior based control. Saffoitti[12] has proposed   fuzzy  
based   methods for mobile robot navigation. Ismail and Nordin [13] have proposed reactive 
navigation by considering two separate fuzzy controllers for velocities and steering angle. In all 
these approaches, the purpose was restricted for fundamental and simple control actions.  Fuzzy 
velocity control of mobile robot has been discussed by Mester [14]. However, only 10 heuristic 
fuzzy rules were used in their experiments. These approaches have inherent drawback that much 
efforts are needed to adjust tuning parameters and firing in advance. Intelligent navigation 
systems for omni directional mobile robots were described by Zavalang et.al.[15],  which was 
influenced by potential field approach. Ishikawa [16] and Wei li et al.[17] have  proposed behavior 
fusion for robot navigation in uncertainty using fuzzy logic. Both these approaches need 
improvements to handle complex environment. A system integrating techniques like dead–
reckoning, self localization and environment are reported by Lee and Wu in [18].  In their 
approach membership functions and fuzzy rules were designed based on genetic algorithm.  
However,  Genetic algorithm may  not the best method  for  generation of  rule base with 25 rules 
and priority based selection of heading directions does not take into account the behavior 
coordination and this algorithm focuses on direction control without considering velocity control. 
An obstacle avoidance approach using fuzzy logic has been proposed by Li and Yang [19].  A 
collision-avoidance approach using fuzzy logic is introduced by Lin and Wang [20] where, 
different modules e.g.  Static-obstacle avoiding module, avoiding moving obstacle module and 
directing-toward-target module are created for the robot navigation. However, these modules are 
separately inferred and are not as coordinated as human reasoning.  In mobile robots reactive 
navigation, key problem of   local minima  is addressed by Zhu and Yang [21] with state memory 
strategy; Wang and Liu [22] with minimum risk approach and   by Xu and Tso [23] by considering 
π radian target switching. O.R.E. Motlagh et.al.[24]  proposed  virtual target  switching strategy to 
resolve multiple dead end to improve the performance of earlier methods  by  considering three 
target states  and six obstacle states resulting into 18 rules. However, with the limited number of 
rules such improvement not always guaranteed in dynamically changing environment with 
change in dead end shapes.  
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To improve the performance, some neuro fuzzy methods have been proposed. Song and sheen 
[25] have considered heuristic fuzzy- neuro network to reactive navigation of mobile robot. In their 
approach, resulted velocity command enabled robot to move in an unknown environment using 
Fuzzy Kohonen Clustering Network (FKCN). However, their heuristic approach considered nine 
typical obstacle classes to formulate total 16 rules. Wei li et. al.[26] have proposed two level 
neuro-fuzzy architecture for behavior based mobile. In that approach, neural training has been 
done by   four layer standard back propagation network and used only few selected examples to 
train neural network. However, in both above approaches; generalization of neural network for 
complete input space with limited training examples can not be guaranteed. Marichal et al. [27] 
have suggested an-other neuro fuzzy strategy by considering a three-layer neural network with a 
competitive learning algorithm for a mobile robot. The approach has been able to extract   the 
information for fuzzy rules and the membership functions from human guided set of trajectories. 
For complex situations, it is difficult to optimally set required trajectories and hence resulted rules 
may not work well for generalization. Zhu and yang [28] have proposed five layer neuro-fuzzy 
controller considering neural networks to improve the performance of fuzzy network. The 
approach includes an algorithm to surpass redundant rules by observing the response of fuzzy 
network and removing rules with hamming distance lesser than specified threshold.  However, 
this obviously requires training to mobile robot in given environment. However, for some critical 
operations like mining and under water operations, such training in given environment is never 
possible. Approaches without proper generalization will fail to take best decision when mobile 
robot needs to take immediate actions without any prior scanning of the given environment. 
Heuristic based approaches do not guarantee satisfactory performance for in general, difficult 
unknown environment space.   
 
In this paper, we propose two level neuro fuzzy based algorithm that overcomes the shortcoming 
of current approaches [25-28] in terms of learning mechanism used.  In the proposed system, 
environment sense is done by neural network and behavioral control is executed by fuzzy 
system. Inputs to the neural network are outputs from multi sensors groups and heading angle. 
Output of neural network is reference heading angle that in connection with sensors data serves 
as input to fuzzy system. We propose discrete sampling based approach, in which optimal neural 
training is achieved by providing effective heterogeneity in training pairs while; retaining 
homogeneity in terms of providing different training pairs to the neural network. In our approach, 
we have generalized many parameters for robot navigation task like; number of sensors required 
for environmental sensing, arrangement of sensors, sensors grouping and quantization and 
heading angle inference. These make our approach unique and more generalized compared to 
approaches found in literature. Generalization of fuzzy based parameters enables us to select, to 
tune parameters as per requirements of given environmental conditions. Behavior based fuzzy 
systems used for mobile robot navigation demonstrate reasonably good performance; while 
navigating in cluttered and unknown environment 
 
The rest of this  paper is organized as follows:  the proposed algorithm for neuro-fuzzy based 
mobile robot navigation is discussed in Section 2, including range computation from given 
obstacles, sensors arrangement, grouping quantization and inference of heading angle. Section 3 
descries neuro-fuzzy system for reactive navigation. Section 4 illustrates simulation results and 
detailed behavior analysis of neuro-fuzzy based mobile robot navigation. Finally concluding 
remarks are given in Section 5.  

  
2. PROPOSED ALGORITHM  
In this section, we propose an algorithm for reactive navigation for a mobile robot using neuro-
fuzzy based sys-tem. First, we describe the problem formulation for the motion planning problem.  
Let A be the single robot moving in a Euclidian space W, called workspace, represented as R

N
, 

with N= 2 or 3. Let B1, B2…Bq be the rigid objects distributed in W. The Bi’s are called obstacles. 
With assumptions that no kinematics constraints limit the motion of A  in W, generate a path T 
specifying a sequence of positions and orientations of A avoiding contact with Bi’s,  i.e. starting at 
the initial position and orientation and terminating at the goal position and orientation. 
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2.1 Mobile Robot Configuration 
We consider two dimensional workspace (N=2) for mobile robot as shown in Figure.1. Mobile 
robot is having initial and target position coordinates denoted as (xo, yo) and (xt, yt) respectively. 
Mobile robot’s current position (calculated and updated at each step) can be denoted as (xcurr 
,ycurr). Angle between target and positive y axis is θtr. Robot’s pose (head) with respect to positive 
y axis is considered as θhr and θhead is the heading angle between target and robot current 
position. Span (S) is the distance between left and right wheel. Vl and Vr are mobile robots left 
wheel and right wheel velocities, respectively. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1: Mobile Robot Configuration 

 
The mobile robot has two independently driven co-axial wheels. We consider a mobile robot with 
differential drive wheels. Final target positions are known to the robot at all the time. At each step, 
current location and orientation are computed. No history of past sensor readings are retained 
and thus robot is having pure reactive navigation. Obstacles may be stationary or may be mobile. 
 
2.2 Range Calculation of Mobile Robot From Given Obstacles 
Acquisition of precise range information of a mobile robot from each nearby obstacle is one of the 
most important tasks for robot navigation. Mobile robot needs to effectively sense surrounding 
environment. We have proposed an algorithm to find range information for robot navigation in 
presence of moving obstacles in our earlier work [29]. The important point is that because of 
presence of moving obstacles, prior geometry information may not help. But, our model acquires 
geometry information from sensed signals computed with the help of sensors mounted on robot. 
This makes our approach very general and can be used for any scenario. Following steps 
explains our algorithm to find out range of obstacle from robot A to Obstacle B: 
 
 
 
 
 
 
 
 

 

Target 

 

X-Axis 

 

θhead 

Robot 

 

Y-Axis 

 

Robot head  

θtr 

θhr 



M. M. Joshi  & M. A. Zaveri 

International Journal of Robotics and Automation (IJRA), Volume (2) : Issue (3), 2011 132 

 
 

FIGURE 2:  Range Calculation of a Mobile Robot from Obstacles 

 
 1) Let total N ultrasonic sensors be placed on robot to sense the surrounding environment as 
shown in Fig-ure.2. These sensors are represented as N1,N2… Nk, Nk+1.. NN. Signal of k

th
 sensor 

(Nk) is represented by an arrow towards the obstacle. 
 
2)  Let, (x1, y1) and (x2, y2) are two points on robot to represent k

th
 sensor direction. The ray 

emerging from sensor mounted on mobile robot to obstacle can be considered in terms of 
parametric equation form of straight line as: 
 
  x= x1+ ( x2- x1) Dk         
  y= y1+ (y2- y1) Dk       (1) 
 
Where, Dk is a real value that denotes the distance of a mobile robot from obstacle. In order to 
ensure that robot looks only in forward direction and the maximum range of ultrasonic sensor is 
set to Dmax,     
 
  0   < Dk< Dmax         (2) 
 
3)  Small line segment on an obstacle will be represented by points (x3, y3) and (x4, y4). This line 
segment will intersect with ray emitted by the sensors on robot. Particularly this line segment 
being very small can be considered as straight line segment. This assumption will allow us to 
calculate range for any shape obstacle in our algorithm.   Consider (x3, y3) and (x4, y4) be two 
points representing one line segment on the i

th
 obstacle and described by parametric equation 

form of straight line as: 
  x = x3+ (x4- x3) Sij         
           y = y3+ (y4- y3) Sij              (3)  
  
Where,   Sij - a real value presenting line segment of i

th
 obstacle’s j

th
 side. To ensure that a 

particular ray emitted by sensor mounted on the robot hits the line segment (side of the obstacle); 
the value of Sij should be between 0 and 1, i.e. 
     
  0 <= Sij <= 1         (4)  
 
4)  Solution of equations (1) and (3) will give us the distance DK, i.e. distance between robot’s k

th
 

sensor to the i
th
 obstacle’s j

th
 side: 
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((y -y )*(x -x )-(y -y )*(x -x )) 4 3 1 3 1 3 4 3

((y - y )*(x -x )-(y -y )*(x -x ))2 1 4 3 4 3 2 1

D
K

=                   (5)      

 
5) Computation of the value of DK is to be carried out for each of total N sensors. 
 
For example, rectangle shaped n obstacles will have 4*n edges. For total N sensors, there will N* 
(4* n) size matrix computed at each step.   

 
 Sensors Grouping  
In our algorithm, we consider robot fitted with N ultrasonic sensors in the front. If the front (head) 
of the robot is at 0 degrees (w.r.t. +y axis), then the sensors are located between -90 to +90 
degrees each being separated by θs =180/N degrees as shown in figure. 3(a). 
 

 

 

FIGURE 3(a):  Arrangement of ultrasonic sensors FIGURE 3(b):  grouping of  sensors 

Sensors are grouped and final values are quantized before sending into the intelligent network. A 
sensor grouping will result into reduction of computational cost.  In our algorithm, we sense 
unknown environment with N Sensors to extract more information about surroundings. At the 
same time, we resize sensors into M groups (M< N) before giving as input to intelligent system to 
reduce computational complexities still retaining the essence of more information. As the final 
value for each of M group, minimum value among the corresponding sensors readings are taken 
and then fed to intelligent system module. For figure.3 (b) Considering d(i)–ultrasonic data  for ith 
sensor;  distances to the obstacles  may defined  as below: 
 

Left_obs =  min{d (i)}    where, i= 1,2…x.     
Front_obs =  min{d (i)}  where, i= x+1,x+2 …y. 
Right_obs =  min{d (i)}  where, i= y+1, y+2,.. N        (6)      
 

2.3 Quantization of Sensors Values 
In our approach, we perform quantization to provide discrete samples for neural training. 
Quantization formula for groups (Xi) where, i=1, 2...M (M<=N) is as follows: 
 
  Xi = 1  for 0< di <=D1, 
   2  for D1 < di  <=D2, 
   3  for  D2 < di <=D3, 
   …………….   . . 
   Z for  di  >DZ.      (7) 
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Where, di is the minimum sensor value of the ith group and D1, D2 … DZ are threshold values for 
quantization.  

 
2.4 Defining Heading Angle 

 
We define heading angle (θhead) as follows: 

• If   θhead < p           then  θhead = α, 

• If   p <=  θhead <= q  then   θhead =β, 

• If  θhead  > q             then   θhead =γ         (8) 
 

Once surrounding environment sensing is completed; set of information is available for planning. 
Next step is to train intelligent system with these set of information. As stated earlier, neuro-fuzzy 
systems have abilities to learn and then perform intelligent task based on learning. Next 
subsection describes neuro-fuzzy based system. 

 

3. NEURO-FUZZY SYSTEM FOR REACTIVE NAVIGATION  
Neural and Fuzzy based hybrid systems have been used in many applications in order to take 
advantage of individual systems. This motivates us to use combined neuro-fuzzy system for 
reactive navigation of a mobile robot in the presence of obstacles.  We propose two stage, hybrid 
neuro-fuzzy system in which information from an environment (Sense) is obtained by neural 
networks while; more correct decisions (Act) are performed using a fuzzy system. As far as 
environment understanding (Sense) is concerned; neural network will be more effective 
candidate; as it gives computationally cost effective solutions than fuzzy system [30]. On the 
other had, we require tight control to exert final wheel velocity where fuzzy system would be 
better choice because of its functional mapping ability [31]. Our proposed framework provides an 
optimum learning of neural networks via discrete sampling that overcomes the problems faced by 
existing neuro fuzzy approaches based on experimental and heuristic bases training [25-28].   
 
We consider two stages neuro-fuzzy based hybrid architecture as shown in Figure.4. In our 
proposed neuro-fussy system, the inputs from the sensors are fed to neural network which forms 
first stage of the proposed sys-tem and it is cascaded with a fuzzy system to generate final 
control action. First stage neural network has four inputs. Out of four inputs, three inputs are the 
distance information from the left, front and right obstacles pre-sent in robot’s perceptual 
environment. The fourth input is the heading angle. As an output, neural network generates 
Reference Heading Angle (RHA); an inferred angle than original head angle. During this process , 
as heading angle inference is already been  processed by neural network and bettered with the 
support of local sensory data, resulted reference heading angle imparts better information to the 
subsequent  fuzzy system than an actual heading angle. Heading angle is one of critical 
parameters and should be inferred correctly for reactive robot navigation. The neural network 
does this task and provides a reference heading angle as an output. In the second stage, fuzzy 
logic processes this information and drives the output wheels of mobile robot. Outputs of the 
system are left and right wheel velocities. Input sensory information’s cardinality for the neural 
and fuzzy networks can be shared or can be set to higher value for neural network to take 
maximum advantage of its learning capabilities.  
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FIGURE 4: Two stage Neuro-Fuzzy System 
 

3.5 Training Using Neural Network  
In our framework, neural network has M inputs (one per each of sensor group) derived from 
grouping of N sensors and giving the distance information about robot’s perceptual environment. 
One more input given to the neural network is the heading angle. Neural network processes 
these inputs and generates a reference heading angle. Neural networks have got remarkable 
generalization capabilities, once trained properly. Training of intelligent system is crucial for 
successful navigation of mobile vehicle. Generally, it is difficult to train such system as the input 
space may contain infinitely many possibilities and mobile robot needs to learn effectively for 
successful navigation. Many times mobile robot needs to execute operations in hazardous 
environments like fire or space missions where, online training is not feasible. Off line training is 
only possibility in such cases. Mobile robot needs to sense environment in real time and also to 
make precise decision based on learning.  
 
Various training approaches reported in literature are of following categories: a) generating 
training sequences by experimental set up as in [17] and b) heuristic approach based on expert 
rules [25]. In the first approach, the system learns by setting the different environmental set ups. 
i.e. different start, end (target) positions, different obstacles positions etc. In this case, the number 
of training patterns resulted for different input conditions may not be evenly distributed. Some of 
the input patterns may appear more number of times, while some may appear lesser or even may 
not appear. Training may not be considered optimum as; for some inputs patterns are not learnt 
while some are over learnt. In case of second alternative (training by expert rules [8]), training is 
per-formed using fewer number of input patterns. This type of training may save training time, 
may give good performance in some cases but, they may not perform well in all kind of 
environmental conditions.  This is because of the fact that selection of training pairs is for a 
particular task and they do not represent entire space uniformly. 
In this paper, we propose mobile robot’s training based on discrete uniform sampling that 
overcomes the problems with above mentioned methods. The proposed algorithm not only takes 
samples from the entire sample space (to provide heterogeneity), also takes equal number of 
sample data from all possible input space (to pro-vide homogeneity). In the proposed algorithm, 
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actual sensor readings are considered to be quantized in to n linguistic values. Uniform sampling 
of these quantized values will enable us a) to consider entire space of input region and; b) will 
enable us to generate optimum number of training pairs required for training. In the proposed 
approach, we train the network as follows:  
  

1. Let input cardinality (number of  inputs i.e sensors plus heading angle ) of the neural 
networks equal to M+1 and  each input takes Z linguistic values (e.g. near, medium, far- 
as discussed in earlier section). Then we can generate total Z 

M+1
 training patterns. 

2. Output values of each of these input patterns are decided based on experimentation or 
by expert rules.  

3. Neural network is trained accordingly to training pairs generated and the performance of 
the network can be verified using a proper evaluating function e.g. MSE (mean square 
error).  

4. If any correction is required; make adjustment to step 2 and then repeat steps. 
 
3.5 Fuzzy System (FS)   
Fuzzy logic provides a formal methodology for representing and implementing the human expert's 
heuristic knowledge and perception based actions. We utilize the fuzzy system as shown in 
Figure.4. Out of total four in-puts, three inputs are the distance information from the left, front and 
right obstacles present in robot’s perceptual environment. The fourth input is the reference 
heading angle. Outputs of the network are Left and right wheel velocities. Fuzzy system needs to 
define the membership functions for input and output variables. These membership functions for 
input and output variables are defined in Table 1 and Table 2 respectively. Linguistic values near, 
med (medium) and far are chosen to fuzzify left_obs, front_obs and right_obs. We define 
linguistic values slow, med (medium) and fast to show output parameters left and right velocities.  
 
 _____________________________________________________________________________ 
 
Order      Linguistic        Membership        Corresponding    
       Values       Function               fuzzy numbers 
_____________________________________________________________________________ 
 
1  Near           Trapezoidal       [0.01, 0.01, 1.5, 2.0] 
2  Medium            Triangular        [1.5, 2.0, 2.5] 
3  Far            Trapezoidal      [2.0, 2.5, 4.0, 4.5] 
  

 
TABLE 1: TRANSFORMATION RULES FOR FUZZY INPUTS  

 
_____________________________________________________________________________ 
 
Order      Linguistic        Membership        Corresponding    
           Values        Function               fuzzy numbers 
_____________________________________________________________________________ 
 
1  Slow          Trapezoidal       [0.01, 0.01, 1.5, 2.0] 
2  Medium            Triangular        [1.5, 2.0, 2.5] 
3  Fast            Trapezoidal      [2.0, 2.5, 4.0, 4.5] 
 
_____________________________________________________________________________ 
  

TABLE 2: TRANSFORMATION RULES FOR FUZZY OUTPUTS  
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3.5  Behaviors Fusion based on Fuzzy Reasoning  
 Mobile robot moves in a given environment from start position to the end position. In order to 
avoid obstacles in its path, reactive navigation is performed in response to the sensor data 
perception. In order to coordinate different type of behaviors, various methods are available: i) 
priorities based data fusion ii) inhibiting strategy and iii) behavior based fuzzy reasoning. In 
priority based fusion, certain rules are always given priorities compared to others which may not 
be true always. In second case, when multiple rules are fired simultaneously, few rules are 
dominating and hence other rules are inhibited at the particular stage. In both the cases, enough 
attention may not be given to some rules which in turn may become critical after some period.   
 
In our work, we have used behavior based fuzzy reasoning in which all fired rules are given due 
weight age according to their firing level. For our proposed method, the following behaviors are 
realized: Target Steer, Obstacle Avoidance and Edge following. It is very difficult to acquire 
precise information about dynamic environments through ultrasonic sensors. A set of fuzzy logic 
rules to describe various behaviors are defined for the proposed system. Table 3 gives few 
samples of our defined fuzzy rules. These fuzzy rules show that the robot mainly adjusts its 
motion direction and quickly moves to the target if there are no obstacles around the robot. When 
the acquired information from the ultrasonic sensors shows that there are no obstacles to the left, 
front or right of robot, its main reactive behavior is target steer. When the acquired information 
from the ultrasonic sensors shows that there exist obstacles nearby robot; it must try to change its 
path in order to avoid those obstacles (i.e. Obstacle Avoidance behavior). When the robot is 
moving to a specified target inside a room or escaping from a U-shaped obstacle, it must reflect 
Edge Following behavior.   
 
If input then output  

Rule 
no.. 

 Fuzzy 
Behaviour  

Left 
Obs. 

Front  
Obs  

Right 
Obs.  

Head 
ang  

Left Vel Right Vel 

1 Target Steer Far Far  Far Negative Low Fast 

2 Target Steer  Far  Far  Far  Zero Fast Fast 
3 Target Steer  Far  Far  Far  Positive Fast Low 
4 Obstacle 

Avoidance 
Near Near Far  Negative 

 
Fast Low 

5 Edge 
Following 

Far  Far  Near Positive 
 

Med Med 

 
TABLE 3: Fuzzy If-then rules 

 
4. SIMULATION RESULTS 
In this section, we demonstrate the effectiveness, robustness and comparison of various systems 
for robot navigation using single stage neural network, single stage fuzzy system and our 
proposed hybrid neuro-fuzzy system. We have considered mobile robot having differential drive 
mechanism with span of mobile robot 50 cm. Total 9 ultrasonic sensors (N) are used for the study 
after comparing the results for 5, 9 and 15 no. of sensors and their effectiveness. These sensors 
are equally separated by θs = π/8 and detect the distance of obstacle along the radial direction up 
to 300 cm. The wheels can have a maximum velocity up to 30 cm/s.  Input dimensions to the 
neural, fuzzy and neuro-fuzzy system are set to four. Dmin is set to 100 cm and Dmed is set to 
200cm. In order to define heading angle (θhead), we have set the values of p, q, α, β, γ to -π/8, 
+π/8, 1, 2, and 3 respectively. For our simulation we use two layers feed forward back 
propagation network (FF- BPN) for mapping the input quantized values to the output. Batch mode 
of training is used for neural network.  
 
For neuro-fuzzy system, we have trained first stage neural network by considering 4 inputs as 
described earlier and each input takes 3 linguistic values (near (1), medium (2), far (3)). Hence, 
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total 81 training pairs are generated and used for optimal training of neural network. For the 
second stage of our neuro-fuzzy architecture, i.e., fuzzy system, the fuzzy rules are generated 
using 3 linguistic values and 4 inputs. Total 3 groups are formed in order to give them as inputs to 
fuzzy system module. We use the minimum value among the corresponding sensors’ readings as 
the final value for that group of sensors which is fed to the system module. Left, front and right 
obstacles are equally important inputs to the fuzzy systems. The fourth input to the fuzzy network 
is RHA which is output of neural network stage. The membership function values are fine tuned 
by simulating the navigation in many different setups and correcting the errors over number of 
experiments. For fuzzy reasoning Min – Max (Min- for the implication and Max- for aggregation) 
are used. De-fuzzification is done using centroid method. Using fuzzy reasoning, various 
behaviors are weighted to determine final control variables i.e. left and right velocities.   
 
 As stated earlier, we compare it with single stage neural network and single stage fuzzy based 
systems. Figure.5 shows the path comparison of a mobile robot between single stage neural [30] 
and fuzzy approaches [31] while; figure.6 depicts the mobile robot path comparison between 
neural and proposed neuro-fuzzy based systems. These results suggest that, in the case of 
second stage (driving stage), fuzzy systems are preferred. This is because of the fact that the 
neural network’s output in the unexplored regions of inputs is not predictable and error at each 
stage gets accumulated and hence, do not give good and stable path. 
 

  
 

FIGURE 5: Comparison of Robot navigation:  Neural 
& Fuzzy system 

 

 
FIGURE 6: Comparison of Robot navigation:  Neural 

and Neuro Fuzzy system 

 
Figure.7 illustrates robot navigation with fuzzy system [31] while; figure. 8 shows robot navigation 
with proposed neuro-fuzzy system. Comparing the results, it is found that in figure.7 robot 
eventually strikes with the obstacle located to the left bottom corner while with the same scenario; 
the Neuro- fuzzy system avoids the same obstacle successfully. It is because of the fact that in 
the case of a single stage fuzzy system, one of the inputs (i.e. heading angle) contradicts to the 
perception by the other inputs while; in the case of neuro-fuzzy system (as shown in figure.8) the 
RHA, which is an inferred heading angle, has been proved very useful input to the fuzzy system. 
The use of neural network as first stage in neuro–fuzzy system architecture provides better 
inference of an environment using the sensed input values. The simulation results highlight the 
fact that adding the neural stage enhances environmental sensing capacity of the fuzzy system. 
The same fact is observed from the outputs of various experiments performed in different 
environmental conditions. 
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FIGURE 7: Robot navigation with single stage fuzzy 
system 

 

 
FIGURE 8: Robot navigation with  two stage Neuro- 

Fuzzy system  

 
 
 

 
 

FIGURE 9: Neuro-fuzzy based mobile robot navigation  

 
Next subsection presents the detailed behavior analysis of proposed neuro-fuzzy based systems 
that highlights the effectiveness of our proposed system in given environment.   
 
A Various Fuzzy Based Behaviors and Heading Angle 
Consider mobile robot navigation for the case shown in figure.9. Mobile robot starts its journey 
from position “START” to the final position “F”. For a given scenario, mobile robot follows path 
from START-> A -> B -> C -> E -> F as shown in figure.9. Figure.10 shows mobile robot’s 
heading angle during its journey. Head-ing angle is the difference between target and head of the 
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mobile robot and provides information about current head orientation. Initially, robot performs 
“Target steer” behavior and reaches to position “A” with “ZERO” heading angle, where it takes 
right turn which is a result of “avoid obstacle” behavior; and heading angle changes quickly to -90. 
There after, the robot follows the wall, i.e., the wall following behavior, and it reaches to “B”. At 
the same time, heading angle slightly varies from -90 to -100 degrees. At this point “B”, it takes 
right turn again (head angle (equal to α) changed to -180) and following the wall and reaches to 
“C” by decreasing heading angle (equal to β) further to -200 degrees. Mobile robot finds the end 
of the wall and perceives potential attraction by the target and takes left turn by avoiding contact 
with obstacle and reaches to “D”. During the same, the heading angle (equal to γ) starts 
increasing to -45 degrees. From position “D” to “E” it continues its quest to reach target following 
wall (heading angle (decreases slightly from -45 to -50 degree (δ)), finds opening at “E”. Finally 
mobile robot reaches from “E” to “F” with “target steer” behavior (first reducing head angle to near 
zero and then with almost zero head reaches target “F”). 
 

 
 

FIGURE 10: Mobile robot’s heading angle 

 
 

FIGURE 11: Left and right velocity control over time for mobile robot navigation 
 

Speed Control of Mobile Robot  
In mobile robot navigation, speed control analysis gives information about and robot’s left and 
right velocities over the time. Figure.11 shows left and right wheel speed control. In differential 
drive mechanism, to take right turn; robot increases its left velocity and decreases right velocity 
and vice versa. As shown in figure11, from “START” position to point “A”, left and right velocities 
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are found same. From “A” to “B” position (first, mobile robot takes right turn and then follows 
straight line). Hence, initially left velocity is higher than right velocity and then both almost being 
same till “B”. At “B” robot has left velocity higher again (avoid obstacle- right turn) and then with 
almost same left and right velocities (wall following) reaches “C”. Journey from “C” to “D” is with 
right velocity values higher than left velocity values (avoid obstacle /attraction potential - left turn). 
Mo-bile robot moves straight with same left and right velocity values (wall following) from point “D” 
to “E”. At last, at point “E”, right velocity values are more than left velocity values (right turn) and 
finally, it settles to point “F”. 
 
Target Distance and Distance Traveled 
Figure.12 shows mobile robot’s target distances and distance traveled over the time period for a 
case discussed in figure. 9. Start and target (F) coordinates for mobile robots are (10, 2) and (10, 
18) respectively. For mobile robot From “START” to “A”, target distance is linearly decreased 
(START->A). When mobile robot finds an obstacle in between and trying to move out of the 
same, target distance is gradually increased again till “D” (A->B->C->D). Then onwards, target 
distance is again linearly decreased on path from D -> E -> F. Second graph in figure.12 shows 
the total distance traveled a curve with a linear rise from start to finish point. For the given 
situation, in presence of given obstacle scenario;   mobile robot travels  total  39.65 meters   
compared to  16 meters if it had traveled without any obstacles  from START to F  position (i.e. 
distance between (10, 2) and (10, 18) )  as shown in figure.9. 

 
 

FIGURE 12: mobile robot’s target distance and distance traveled  
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FIGURE 13(a): Typical scenario for obstacle avoidance: case01  

 

 
FIGURE 13(b): Typical scenario for obstacle avoidance: case02  

 

 
FIGURE 13(c): Typical scenario for obstacle avoidance : case03 

 
Importance of Adding Input Neural Stage 
Figure.13 (a-c) shows   three different cases for mobile robot navigation which highlights the 
importance of neural network stage. In first case, current positions of robot, obstacle and target 
are as shown in Figure.13 (a). Perceptions from mobile robot sensors suggests that left and front 
obstacles are near, right obstacle is far and head angle is negative. These inputs suggest that 
mobile robot should move left (because head angle is negative) while; to the left and front there 
are obstacles at near distances. Here, two senor input groups distances  left and front obstacles, 
contradict to another input, namely, head angle. Due to this fact, a single stage fuzzy system may 
not be able to take best decision. When neural network is used along with fuzzy system (i.e. 
neuro-fuzzy), it is observed that the output of neural stage, Reference heading angle (RHA), 
becomes positive; compared to earlier input, i.e., heading angle  which was negative. When this 
inferred input (RHA) is given to fuzzy system   for inference; now instead of contradicting with the 
rest of inputs it supports the inference by ultrasonic sensors. Hence, this enables fuzzy system to 
exert better control action.  
 
In second case (as shown in figure.13 (b)), front obstacle is removed keeping other conditions 
same as in case one; first stage neural network corrects head angle to zero (indicating go straight 
i.e. wall following behavior) from negative (go left i.e target steer). As a third case (as shown in 
figure..13 (c)) both the obstacles are re-moved keeping robot, target positions and other 
conditions are kept unchanged. Here, first stage neural network output suggests to continue 
earlier perception (i.e. same as input - reference heading angle inference is negative). In 
summary, neural network suggests different behaviors like avoid obstacle (move to right), wall 
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following (go straight) and target steer (continue left) in all three cases respectively. Inferences 
made by the neural stage, when in turn given as input to the subsequent fuzzy system, it 
strengthens fuzzy system’s local perception provided by the local sensors. Resulted neuro-fuzzy 
system performs better than single stage neural or single stage fuzzy systems. These results 
highlight the importance of adding a neural stage before the fuzzy control stage in the proposed 
system. 
 

5. CONCLUSIONS 
In this paper, an approach for robot navigation using neuro-fuzzy based system is discussed. The 
mobile robot performs reactive navigation which is very useful for real time, dynamic environment 
rather than looking for an optimal path as performed by path planning techniques. Fuzzy system 
architecture for behavior based control of robot navigation gives better performance compared to 
neural based systems. Neural network’s output in the case of unexplored regions of inputs is not 
predictable and error at each stage is accumulated. As a result it does not lead to good and 
stable navigation path. The performance of mobile robot navigation system is improved by 
cascading the neural network and fuzzy system. The simulation results show that RHA provides 
better inference compared to original heading angle. The behavior based analysis of mobile robot 
navigation using the proposed neuro-fuzzy system demonstrates the excellent performance in 
complex and unknown environments. Simulation results for dynamic, complex and cluttered   
environment of mobile robot navigation space with neuro-fuzzy based architecture demonstrate 
good performance compared to most recent comparable approaches. This is because of  our 
generalization of most of the parameters likes number of sensors, threshold values to measure 
distances and heading angles, optimum training using discrete sampling based approach for 
neural system training. 
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