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Abstract 

 
In this paper, Takagi-Sugeno (T-S) fuzzy descriptor proportional multiple-integral derivative 
(PMID) and proportional derivative (PD) observer methods that can estimate the system states 
and actuator faults simultaneously are proposed. T-S fuzzy model is obtained by linearsing 
satellite/spacecraft attitude dynamics at suitable operating points. For fault estimation, actuator 
fault is introduced as state vector to develop augmented descriptor system and robust fuzzy 
PMID and PD observers are developed. Stability analysis is performed using Lyapunov direct 
method. The convergence conditions of state estimation error are formulated in the form of LMI 
(linear matrix inequality). Derivative gain, obtained using singular value decomposition of 
descriptor state matrix (E), gives more design degrees of freedom together with proportional and 
integral gains obtained from LMI. Simulation study is performed for our proposed methods. 
 
Keywords: Fault, Descriptor Systems, Estimation, Fuzzy Model, Observers, Robustness, Linear 
Matrix Inequality, Quadratic Stability.

 
 
1. INTRODUCTION 

A fault is termed as an unexpected change in the system’s behavior that deteriorates the normal 
functioning of the system. The process of estimating the magnitude of the fault occurring in the 
system is coined as fault estimation [3]. In order to accomplish successful space missions the 
safety of satellite/spacecraft attitude control systems is crucial. Actuators and sensors are 
essential components of satellite control systems. If they get faulty, fault diagnosis must be 
carried out in order to avert the danger involved in space missions. Using sliding mode observers 
[6, 7] and adaptive observers [9], fault diagnosis is carried out extensively. 
 
Integral actions are helpful to achieve steady-state accuracy in control systems. The design of 
proportional-integral (PI) observers were established [10] with the introduction of integral action in 
observer design. Till now, such observers have attracted many researchers. 
 
The problem of constructing the observers for descriptor linear systems has been studied by 
many researchers parallel to the standard linear control systems. The design of full-order 
observers and reduced-order observers for descriptor linear systems can be found in fault 
diagnosis literature. 
 
In real sense of words, the satellite attitude dynamics show non-linearity. So, Takagi-Sugeno (T-
S) fuzzy model [11] can be used to linearise the satellite attitude dynamics at suitable operating 
points. [4] introduced fuzzy proportional multiple-integral observer method for robust actuator fault 
estimation. The idea of generalized proportional integral derivative (GPID) and proportional 
multiple-integral derivative (PMID) observers is proposed by [1, 2]. 
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In this paper, we propose fuzzy PMID and PD observer based methods for robust actuator fault 
estimation. In our design, derivative gain gives more design degrees of freedom as compared to 
fuzzy PMI observers. The design constraints in our fuzzy PMID method are not strict for observer 
gains as compared to PMID or PID observers mentioned above. 
  
In Section 2, we formulate the problem for actuator fault estimation of satellite control systems. 
The T-S fuzzy PMID & PD descriptor observers are designed in Section 3 and Section 4 
respectively. Simulation studies are performed in order to validate the proposed methods in 
Section 5. 
 

2. PROBLEM FORMULATION 

 
2.1 ATTITUDE DYNAMICS 
The equation of rotational motion of rigid satellite/spacecraft body is: 
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In (2) we define as follows: 
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Therefore, 
 

( )( ) duw TThJSJ +=++ ωωω&                                                                                                            (3) 

where inertia matrix of satellite is J ,ω is angular velocity with respect to inertial frame, uT is output 

torque of the flywheels, dT  is the disturbance from environment and wh  is the angular momentum 

of three flywheels [4].  
 

Withω as the state variable and actuator fault af , the state space system for (3) is represented 

as: 
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Now (4) can be written as [4]: 

( )
Cxy

FfDdBuxfx a
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+++= ,&
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where ( ) ( )( ) 11
,

−− ===+−= JFDBhJSJxf wωω and 33×= IC
 

 
2.2 T-S Fuzzy Model 
The T-S fuzzy model consists of an if-then rule base. The antecedent of each rule [8] comprises 
of scheduling variables and fuzzy sets. The consequent of each rule is a simple functional 
expression.  
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The i-th rule is described as 
 
Model rule i: 

If 1z is i
Z1 and … and pz is i

pZ  then ( )zFy i=  

 

where the vector z has p components, jz  j =1, 2… p, and stands for the vector of scheduling 

variables and their values determine the degree to which rules are active. The sets, i
jZ , j=1, 2, … 

, p; i = 1, 2, …, m, where m is the number of the rules, are  the antecedents fuzzy sets. The 

values of a scheduling variable  belong to a fuzzy set i
jZ  with a truth value given by the 

membership function ijλ : [0, 1]. The truth value for an entire rule is determined based on the 

individual premise variables, using a conjunction operator as:  
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The fuzzy weights are determined as 
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The T-S fuzzy system for (5) can be written as: 
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where kn
i RF

×∈ . 

 
Each linearised model for satellite can be obtained as [4]:
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1
0 ,
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So we [4] have 
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3. T-S FUZZY DESCRIPTOR PMID OBSERVER 
Consider the following fuzzy descriptor system 

  

( )( )

( ) CxxCzwy

FfDdBuxAzwxE

i

p

i
i

ai

p

i
i

==

+++=

∑

∑

=

=

.
1

1
&

                                                                                         (11)                                          

where nRx ∈  is the descriptor state vector, mRu ∈ and p
Ry ∈ are, respectively, the control input 

and output vectors, k
a Rf ∈ is unknown actuator fault. The matrix E may be singular.  
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The q-th derivative of the fault is assumed to be bounded. The fault considered in this paper 

allows q 1 as the first derivatives of faults with time are bounded. 
 
Consider the following system with proportional, multiple integral and derivative weights of the 
output estimation error 
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Here, nRx ∈ˆ  is an estimation of the descriptor state vector x , and ( )qiRf
ki

a ,...,2,1ˆ =∈ is an 

estimation of ( )iq − -th derivative of the fault; the proportional gain pn
p RL ×∈ , the derivative 

gain pn
d RL

×∈  and the integral gain pk
i RL

×∈  are design matrices. 

 
In order to estimate the actuator fault, we construct an augmented descriptor system as follows: 

Let ( ) ( )qif
iq

i ,...,2,1, == −ξ
                                                                                                           (14)

 

 
Using (12), (13) and (14), we get: 
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Now we develop observer for augmented system (15) as: 
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where, 
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The dynamic state error equation is: 
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Condition 1: The trio ( )CAE i ,,  is completely observable if 
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Theorem 1: If conditions 1 and 2 are satisfied, there exists a robust fuzzy observer in the form of 
(16) for the plant (15), which can make the steady estimator error dynamics as small as any 

desired accuracy. The derivative gain is such that CLES d+= is non-singular and the gain pL is 

solved from the following linear matrix inequalities if there exists a common positive definite 
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with 0>γ then ip YSPL 1−=  

Proof: Under the conditions 1 and 2, the trio ( )CAE i ,,  is completely observable. Then derivative 

gain must be chosen such that S is non-singular. 
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For ( ) ,mErank = singular value decomposition of descriptor state matrix E gives two orthogonal 

matrices Γ and Ξ such that 
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In order that trio (E, A, C) is completely observable, 

( ) mnCrank −=2  
 
Thus, one has derivative gain as below [12]: 
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where dγ is any positive number.  

 
We can compute as below [12]: 
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which implies that CLE d+  is non-singular. Now by using ,, dLE and C , we can say that 

CLES d+=  is non-singular too. 

 
Stability analysis is performed using Lyapunov direct method. The convergence conditions of 
state estimation error are formulated in the form of LMI (linear matrix inequality).The proportional 
and integral gains are determined from obtained LMI (21). 
 
When a system is quadratically stable it implies that it is stable. However, the reverse is not 
necessarily true. So, the conditions obtained using the Lyapunov function are only sufficient. The 
unforced T-S model is quadratically stable if the Lyapunov function decreases and tends to zero 
when time approaches to infinity for all trajectories of error in our case.  
 
The goal of robust actuator fault estimation is to determine proportional and integral gains 
(together with derivative gains) that cause the asymptotic convergence of error towards zero as 
time tends to infinity in case of disturbances and perturbations. 
 
Consider the following Lyapunov function candidate, 

( ) ,ePeeV T=  
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Now, the stability conditions are obtained as in (25) below 
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4. T-S FUZZY DESCRIPTOR PD OBSERVER 
Consider the following fuzzy descriptor system with proportional and derivative weights of the 
output estimation error 
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where pL and dL are respectively the proportional and derivative gain matrices. Derivative gain is 

determined using (22). 
 
In order to obtain the estimation of actuator fault, we introduce fault as an auxiliary state vector in 
(11) and get the following augmented system, 
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If there exists an observer as (28) for the plant (27), then actuator fault and the states of the 
system can be estimated simultaneously. 
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The dynamic state error equation is: 
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Theorem 2: If conditions 1 and 2 are satisfied, there exists a robust fuzzy observer in the form of 
(28) for the plant (27), which can make the steady estimator error dynamics as small as any 

desired accuracy. The derivative gain is such that CLES d+= is non-singular and the gain pL is 

solved from the following linear matrix inequalities if there exists a common positive definite 

matrix )()( knkn
RP

+×+∈  and matrix iY  such that  

0
2

11

<












−−

−+−−+
−

−−−

IPSD

DPSICYYCAPSPSA
TT

i
T

i
T

i
T

i

γ
                                                                (30) 

with 0>γ then ip YSPL 1−=  

Proof: Proof is similar to theorem 1. Derivative gain and proportional gains are obtained in the 
same fashion as in theorem 1. The only difference is that we have removed multiple integrals.    
 
Remark: As we have introduced the actuator fault as an auxiliary state vector in the plant (11), the 

matrix 3IF = and not the inverse of inertia matrix J. The actuator fault can be directly isolated 

from estimated state x̂ . 
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5. SIMULATION RESULTS 
In order to obtain the T-S fuzzy model, suitable operating points are chosen in the vicinity of zero 
and we employ triangular membership function in this case. The actuator faults [4] along three 
axes are 
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The simulation data is borrowed from [4]. The proportional and integral gains are obtained using 
proper index γ

 
for fuzzy PMID. In case of fuzzy PD, only proportional gains are determined using 

(30).   

The T-S Fuzzy PMID Descriptor Observer shows satisfactory performance when q 1. The 
simulation results shown below are obtained using MATLAB/SIMULINKsoftware.  
 
In order to get the T-S fuzzy model, linearization method is employed using suitably choosen 8 
different operating points in the vicinity of equilibrium point (0,0,0). The reasonable index γ  is 

choosen in such a way that feasible solution is obtained for LMIs  in (21) & (30).  
 
Derivative gain is obtained from (22) and proportional-integral gains are determined from (21) for 
fuzzy descriptor PMID observer. The fuzzy descriptor system (15) and fuzzy descriptor observer 
(16) are simulated in SIMULINK to get the outputs shown in this section. Similar procedure is 
followed for fuzzy descriptor PD observer using (22), (27), (28), and (30).  
 
Actuator fault estimation using T-S fuzzy descriptor PMID  and PD observers is shown in figures 
1 – 6. It can be infered from these figures that proposed fuzzy descriptor PMID observer 
outperforms fuzzy descriptor PD observer. So, the multiple integral actions introduced in observer 
estimate the fault more better.  
 
In order to have better idea, the figures for estimated error are also obtained that clearly 
represents that fuzzy descriptor PMID performs better than fuzzy descriptor PD observer. 
  
The derivative gain can give us more design degrees of freedom. It can make us obtain fuzzy 
PMID and PD observer only with original coefficient matrices together with proportional or 
proportional-integral gains. Further, the effects of faults and disturbances are reduced with 

smaller values of 1−S  as we increase the derivative gain. Due to such effect, faults are estimated 

more accurately. 
 
In the present design, we have to take only the original system matrices into consideration which 
clearly indicates that the simultaneous observer is state-space observer. So it is more easy in 
computation and reliable in many applications [12]. 
 
                                            



R. Challoo & S. Dubey 

International Journal of Robotics and Automation (IJRA), Volume (2) : Issue (5) : 2011 353 

0 20 40 60 80 100 120
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Time (sec)

T
o
rq

u
e
 (

N
.m

)

 

 

Original fault

Estimated fault

   

FIGURE 1: Actuator fault estimation along X-axis using T-S fuzzy descriptor PMID observer  
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 FIGURE 2: Actuator fault estimation along Y-axis using T-S fuzzy descriptor PMID observer 
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FIGURE 3: Actuator fault estimation along Z-axis using T-S fuzzy descriptor PMID observer  
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FIGURE 4: Actuator fault estimation along X-axis using T-S fuzzy descriptor PD observer     
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FIGURE 5: Actuator fault estimation along Y-axis using T-S fuzzy descriptor PD observer      
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 FIGURE 6: Actuator fault estimation along Z-axis using T-S fuzzy descriptor PD observer      
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          FIGURE 7: Estimated error for fault along X-axis using T-S fuzzy descriptor PD observer 
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          FIGURE 8: Estimated error for fault along Y-axis using T-S fuzzy descriptor PD observer 
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          FIGURE 9: Estimated error for fault along Z-axis using T-S fuzzy descriptor PD observer 
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FIGURE 10: Estimated error for fault along X-axis using T-S fuzzy descriptor PMID observer 
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FIGURE 11: Estimated error for fault along Y-axis using T-S fuzzy descriptor PMID observer 
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FIGURE 12: Estimated error for fault along Z-axis using T-S fuzzy descriptor PMID observer 
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In our proposed work, the multiple integral actions assumed for fault estimation reduced as 
compared to other observers in the literature available. We have assumed q=1 and as it can be 
noticed that [4] has assumed q=2. The less number of integral actions considered in our work is 
sufficient and better enough for observer design to reduce computational cost. As we increase 
the order of the faults, less integral actions would be required as per proposed work. Such 
difference arises due to derivative gain added in previously available fuzzy PMI observer.  
 
The more design degrees of freedom given by derivative gain reduces the multiple integral 
actions and make observer design simpler. It should also be noticed that together with γ , we 

have dγ  index that makes fault estimation better. The main contribution of this paper is design of 

fuzzy PMID and fuzzy PD observers. 
 
The results shown above in figures 1-6 support the proposed methods. It can be noticed that the 
estimated error in the fuzzy PMID observer is less than the fuzzy PD observer. The comparison 
of fig.7 and fig. 10 gives better picture that error in fig.7 is more. Similar conclusions can be made 
about figures for estimated error.  
 
The figures 1-3 clearly show the good estimation of original fault along three dimensions. In order 
to get better notion, fig. 2 and fig. 5 should be compared. In fig. 2 original fault is estimated far 
better than in fig. 5. Thus, the conclusion can be drawn that the fuzzy PMID is better than fuzzy 
PD observer in terms of estimation of time varying faults. 
 
Artificial neural networks are better approximator of nonlinear systems as compared to fuzzy logic 
methods. The extension of this research would include the construction of neuro-fuzzy observer. 
The fuzzy weights determined using linearization method can act as weights of neural networks 
and by choosing suitable activation function, artificial neural networks can be brought into play.  
 
A better fault tolerant scheme can be designed for such observers. We have considered only the 
fault estimation. Fault diagnosis is another essential extension. 
 
The continuous time-invariant system is considered for fault estimation here, the discrete time or 
continuous time variant systems can also be considered giving better application in real world 
problems.  
 

The time delay systems (A (t + t), B (t + t), etc) with reduced order observer can also be 

designed providing less computational costs for observer design. While considering nonlinear 
models, modeling uncertainty should be taken into consideration which is of importance in the 
field of fault diagnosis. 

 

6. CONCLUSION 
The fuzzy descriptor proportional multiple integral derivative (PMID) and proportional derivative 
(PD) observers are proposed to estimate the actuator fault of satellite attitude control systems. 
The convergence condition of state estimation error is formulated in the form of LMI. The 
proposed observers are robust since they have been synthesized to decouple and attenuate both 
the effects of disturbances and fault approximated error. The main contribution can be noticed in 
terms of more design degrees of freedom added by derivative gain which enhances the system 
response. Simulation study reveals fuzzy descriptor PMID outperforms fuzzy descriptor PD 
observer in terms of robust actuator fault estimation.  
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