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Abstract 

 
Refer to this research, a baseline error-based tuning sliding mode controller (LTSMC) is 
proposed for robot manipulator. Sliding mode controller (SMC) is an important nonlinear controller 
in a partly uncertain dynamic system’s parameters. Sliding mode controller has difficulty in 
handling unstructured model uncertainties. It is possible to solve this problem by combining 
sliding mode controller and adaption law which this method can helps improve the system’s 
tracking performance by online tuning method. Since the sliding surface gain (λ) is adjusted by 
baseline tuning method, it is continuous. In this research new λ is obtained by the previous λ 
multiple sliding surface slopes updating factor �δ�. Baseline error-based tuning sliding mode 
controller is stable model-based controller which eliminates the chattering phenomenon without to 
use the boundary layer saturation function. Lyapunov stability is proved in baseline error-based 
tuning sliding mode controller based on switching (sign) function. This controller has acceptable 
performance in presence of uncertainty (e.g., overshoot=0%, rise time=0.4 second, steady state 
error = 1.8e-10 and RMS error=1.16e-12). 
 
Keywords: Baseline Error-based Tuning Sliding Mode Controller, Sliding Mode Controller, 
Unstructured Model Uncertainties, Adaptive Method, Sliding Surface Gain, Sliding Surface Slopes 
Updating Factor, Chattering Phenomenon. 
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1. INTRODUCTION, BACKGROUND and MOTIVATION  
Introduction 
Controller is a device which can sense information from linear or nonlinear system (e.g., robot 
manipulator) to improve the systems performance [1-4].   The main targets in designing control 
systems are stability, good disturbance rejection, and small tracking error[5-6]. Several industrial 
robot manipulators are controlled by linear methodologies (e.g., Proportional-Derivative (PD) 
controller, Proportional- Integral (PI) controller or Proportional- Integral-Derivative (PID) 
controller), but when robot manipulator works with various payloads and have uncertainty in 
dynamic models this technique has limitations. From the control point of view, uncertainty is 
divided into two main groups: uncertainty in unstructured inputs (e.g., noise, disturbance) and 
uncertainty in structure dynamics (e.g., payload, parameter variations). In some applications robot 
manipulators are used in an unknown and unstructured environment, therefore strong 
mathematical tools used in new control methodologies to design nonlinear robust controller with 
an acceptable performance (e.g., minimum error, good trajectory, disturbance rejection).  Sliding 
mode controller is a powerful nonlinear robust controller under condition of partly uncertain 
dynamic parameters of system [7]. This controller is used to control of highly nonlinear systems 
especially for robot manipulators. Chattering phenomenon in uncertain dynamic parameter is the 
main drawback in pure sliding mode controller [8-20]. The chattering phenomenon problem in 
pure sliding mode controller is reduced by using linear saturation boundary layer function but 
prove the stability is very difficult. In various dynamic parameters systems that need to be training 
on-line adaptive control methodology is used. Adaptive control methodology can be classified into 
two main groups, namely, traditional adaptive method and fuzzy adaptive method [41-70]. Fuzzy 
adaptive method is used in systems which want to training parameters by expert knowledge [21-
38]. Traditional adaptive method is used in systems which some dynamic parameters are known. 
In this research in order to solve disturbance rejection and uncertainty dynamic parameter, 
adaptive method is applied to artificial sliding mode controller [39-40, 71-77].  
 
Robot manipulator is a collection of links that connect to each other by joints, these joints can be 
revolute and prismatic that revolute joint has rotary motion around an axis and prismatic joint has 
linear motion around an axis. Each joint provides one or more degrees of freedom (DOF). From 
the mechanical point of view, robot manipulator is divided into two main groups, which called; 
serial robot links and parallel robot links. In serial robot manipulator, links and joints is serially 
connected between base and final frame (end-effector) [15-25]. Parallel robot manipulators have 
many legs with some links and, where in these robot manipulators base frame has connected to 
the final frame. Most of industrial robots are serial links, which in � degrees of freedom serial link 
robot manipulator the axis of the first three joints has a known as major axis, these axes show the 
position of end-effector, the axis number four to six are the minor axes that use to calculate the 
orientation of end-effector and the axis number seven to � use to reach the avoid the difficult 
conditions (e.g., surgical robot and space robot manipulator). Kinematics is an important subject 
to find the relationship between rigid bodies (e.g., position and orientation) and end-effector in 
robot manipulator. The mentioned topic is very important to describe the three areas in robot 
manipulator: practical application such as trajectory planning, essential prerequisite for some 
dynamic description such as Newton’s equation for motion of point mass, and control purposed 
therefore kinematics play important role to design accurate controller for robot manipulators. 
Robot manipulator kinematics is divided into two main groups: forward kinematics and inverse 
kinematics where forward kinematics is used to calculate the position and orientation of end-
effector with given joint parameters (e.g., joint angles and joint displacement) and the activated 
position and orientation of end-effector calculate the joint variables in Inverse Kinematics[1-6]. 
Dynamic modeling of robot manipulators is used to describe the behavior of robot manipulator 
such as linear or nonlinear dynamic behavior, design of model based controller such as pure 
sliding mode controller and pure computed torque controller which design these controller are 
based on nonlinear dynamic equations, and for simulation. The dynamic modeling describes the 
relationship between joint motion, velocity, and accelerations to force/torque or current/voltage 
and also it can be used to describe the particular dynamic effects (e.g., inertia, coriolios, 
centrifugal, and the other parameters) to behavior of system[1-15].  
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Background 
Chattering phenomenon can causes some problems such as saturation and heats the 
mechanical parts of robot arm or drivers. To reduce or eliminate the oscillation, various papers 
have been reported by many researchers which one of the best method is; boundary layer 
saturation method [1]. In boundary layer linear saturation method, the basic idea is the 
discontinuous method replacement by linear continuous saturation method with small 
neighborhood of the switching surface. This replacement caused to considerable chattering 
reduction. Slotine and Sastry have introduced boundary layer method instead of discontinuous 
method to reduce the chattering[21]. Slotine has presented sliding mode controller with boundary 
layer to improve the industry application [22]. Palm has presented a fuzzy method to nonlinear 
approximation instead of linear approximation inside the boundary layer to improve the chattering 
and control the result performance[23]. Moreover, Weng and Yu improved the previous method 
by using a new method in fuzzy nonlinear approximation inside the boundary layer and adaptive 
method[24]. In various dynamic parameters systems that need to be training on-line, adaptive 
control methodology is used. Mathematical model free adaptive method is used in systems which 
want to training parameters by performance knowledge. In this research in order to solve 
disturbance rejection and uncertainty dynamic parameter, adaptive method is applied to sliding 
mode controller. Mohan and Bhanot [40] have addressed comparative study between some 
adaptive fuzzy, and a new hybrid fuzzy control algorithm for robot arm control. They found that 
self-organizing fuzzy logic controller and proposed hybrid integrator fuzzy give the best 
performance as well as simple structure. Temeltas [46] has proposed fuzzy adaption techniques 
for VSC to achieve robust tracking of nonlinear systems and solves the chattering problem. 
Conversely system’s performance is better than sliding mode controller; it is depended on 
nonlinear dynamic equqation. Hwang et al. [47]have proposed a Tagaki-Sugeno (TS) fuzzy model 
based sliding mode controller based on N fuzzy based linear state-space to estimate the 
uncertainties. A MIMO FVSC reduces the chattering phenomenon and reconstructs the 
approximate the unknown system has been presented for a nonlinear system [42].  Yoo and Ham 
[58]have proposed a MIMO fuzzy system to help the compensation and estimation the torque 
coupling. This method can only tune the consequence part of the fuzzy rules. Medhafer et al. [59] 
have proposed an indirect adaptive fuzzy sliding mode controller to control nonlinear system. This 
MIMO algorithm, applies to estimate the nonlinear dynamic parameters. Compared with the 
previous algorithm the numbers of fuzzy rules have reduced by introducing the sliding surface as 
inputs of fuzzy systems. Guo and Woo [60]have proposed a SISO fuzzy system compensate and 
reduce the chattering.  Lin and Hsu [61] can tune both systems by fuzzy rules. Eksin et. al [70] 
have designed mathematical model-free sliding surface slope in fuzzy sliding mode controller. 
 
This paper is organized as follows. In section 2, main subject of sliding mode controller, proof of 
stability and dynamic formulation of robot manipulator are presented. This section covered the 
following details, classical sliding mode control, classical sliding for robotic manipulators, proof of 
stability in pure sliding mode controller, chatter free sliding controller and nonlinear dynamic 
formulation of system. A methodology of proposed method is presented in section 3, which 
covered the baseline tuning error-based tuning sliding mode controller and proofs the stability in 
this method and applied to robot manipulator. In section 4, the sliding mode controller and 
proposed methodology are compared and discussed. In section 5, the conclusion is presented. 
     

2. THEOREM: DYNAMIC FORMULATION OF ROBOTIC MANIPULATOR, 
SLIDING MODE FORMULATION APPLIED TO ROBOT ARM, PROOF OF 
STABILITY  

Dynamic of robot arm: The equation of an n-DOF robot manipulator governed by the following 
equation [1, 4, 15-29, 63-70]: �����	 
 ���, �
 � � � (1) 
Where τ is actuation torque, M (q) is a symmetric and positive define inertia matrix, ���, �
 � is the 
vector of nonlinearity term. This robot manipulator dynamic equation can also be written in a 
following form [1-29]: 
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� � �����	 
 ������
  �
 � 
 ������
 �� 
 ����  (2) 

Where B(q) is the matrix of coriolios torques, C(q) is the matrix of centrifugal torques, and G(q) is 
the vector of gravity force. The dynamic terms in equation (2) are only manipulator position. This 
is a decoupled system with simple second order linear differential dynamics. In other words, the 
component �	  influences, with a double integrator relationship, only the joint variable��, 
independently of the motion of the other joints. Therefore, the angular acceleration is found as to 
be [3, 41-62]: �	 � ������. �� � ���, �
 ��  (3) 

This technique is very attractive from a control point of view. 
Sliding Mode methodology: Consider a nonlinear single input dynamic system is defined by [6]: �� � � !��""#� 
 $��""#�% (4) 

Where u is the vector of control input, �� � is the  &'  derivation of �, � � ��, �
 , �	 , … , �� ����)  is the 
state vector, !��� is unknown or uncertainty, and $��� is of known sign function. The main goal to 

design this controller is train to the desired state;        �* � ��*, �
 *, �	 *, … , �*� ����), and trucking 
error vector is defined by [6]:  �+ � � � �* � ��+, … , �+� ����) (5) 

A time-varying sliding surface ,��, &� in the state space -  is given by [6]: 

,��, &� � � **& 
 .� �� �+ � / 
(6) 

where λ is the positive constant. To further penalize tracking error, integral part can be used in 
sliding surface part as follows [6]: 

,��, &� � � **& 
 .� ��  01 �+&
/ *&2 � / 

(7) 

The main target in this methodology is kept the sliding surface slope ,��, &� near to the zero. 
Therefore, one of the common strategies is to find input 3 outside of ,��, &� [6]. �� **& ,���, &� 4 �5|,��, &�| (8) 

where ζ is positive constant.  

If  S(0)>07 *
*& 8�&� 4 �5 (9) 

To eliminate the derivative term, it is used an integral term from t=0 to t=&9:;<'  

1 **&
&=&9:;<'

&=/ 8�&� 4 � 1 > 7 8&=&9:;<'
&=/ �&9:;<'� � 8�/� 4 �5�&9:;<' � /� 

(10) 

 
Where ?@ABCD is the time that trajectories reach to the sliding surface so, suppose  S(?@ABCD � 0� 
defined as 

/ � 8�/� 4 �>�&9:;<'� 7 &9:;<' 4 8�/�5  
(11) 

and 

F! 8�/� G 0 7 / � 8�/� 4 �>�&9:;<'� 7 8�/� 4 �5�&9:;<'� 7 &9:;<' 4 |8�/�|
>  

(12) 

 Equation (12) guarantees time to reach the sliding surface is smaller than  
|8�/�|

5   since the 

trajectories are outside of H�?�. F! 8&9:;<' � 8�/� 7 :99I9�� � �*� � /   (13) 

suppose S is defined as  

,��, &� � � **& 
 .�  �+ � ��
 � �
 *� 
 .�� � �*�   (14) 

The derivation of S, namely, H
 can be calculated as the following; 
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J
 � �K	 � K	 L� 
 M�K
 � K
 L�   (15) 

suppose the second order system is defined as;  K	 � N 
 O 7 J
 � N 
 P � K	 L 
 M�K
 � K
 L�   (16) 

Where ! is the dynamic uncertain, and also since H � 0 Q�R H
 � 0, to have the best 

approximation ,3S is defined as 3S � �!T 
 �	 * � .�K
 � K
 L�   (17) 

A simple solution to get the sliding condition when the dynamic parameters have uncertainty is 
the switching control law: 3*F, � 3S � U��""#, &� · WXY�,�   (18) 

where the switching function WXY�J� is defined as [1, 6] 

,Z �,� � [ �            , \ 0��           , G 0/               , � /
]  (19) 

and the U��""#, &� is the positive constant. Suppose by (8) the following equation can be written as, �� **& ,���, &� � J ·
 J � ^! � !T � UWXY�,�_ · 8 � `! � !Ta · 8 � U|8|  (20) 

and if the equation (12) instead of (11) the sliding surface can be calculated as  

,��, &� � � **& 
 .��  01 �+&
/ *&2 � ��
 � �
 *� 
 �.��
 � �
 *� � .��� � �*�  (21) 

in this method the approximation of 3 is computed as [6] 3S � �!T 
 �	 * � �.�K
 � K
 L� 
 M��K � KL�  (22) 

Based on above discussion, the sliding mode control law for a multi degrees of freedom robot 
manipulator is written as [1, 6]: � � �:� 
 �*F,  (23) 

Where, the model-based component �:� is the nominal dynamics of systems and  �:� for first 3 

DOF PUMA robot manipulator can be calculate as follows [1]: �:� � ^����� 
 � 
 �� 
 8
 _�  (24) 

and �*F, is computed as [1]; �*F, � U · ,Z �8� (25) 

by replace the formulation (25) in (23) the control output can be written as; � � �:� 
 U. ,Z �8�  (26) 

By (26) and (24) the sliding mode control of PUMA 560 robot manipulator is calculated as;  � � ^����� 
 � 
 �� 
 8
 _� 
 U · ,Z �8� (27) 

where H � bc 
 c
  in PD-SMC and H � bc 
 c
 
 �d
e�e ∑ c in PID-SMC. 

Proof of Stability: the lyapunov formulation can be written as follows, 

g � �� 8). �. 8   (28) 

the derivation of h can be determined as, g
 � 
�
� 8). �
 . 8 
 8) �8
    (29) 

the dynamic equation of IC engine can be written based on the sliding surface as 
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�8
 � �g8 
 �8
 
 � 
 � 
 �  (30) 

it is assumed that 8)`�
 � �� 
 � 
 �a8 � /  (31) 

by substituting (30) in (29) 

g
 � �� 8)�
 8 � 8)� 
 �8 
 8)`�8
 
 � 
 �8 
 �a � 8)`�8
 
 � 
 �8 
 �a  (32) 

suppose the control input is written as follows 3S � 3�I ij :;9k 
 3*j,k � ^���k�� 
 � 
 �� 
 8
 _�S 
 U. ,Z �8� 
 � 
 �8 
 � (33) 

by replacing the equation (33) in (32) g
 � 8)��8
 
 � 
 � 
 � � �S 8
 � � 
 �k 8 
 � � U,Z �8� � 8) l�m 8
 
 � 
 �n 8 
 � �
U,Z �8�a  

(34) 

it is obvious that o�m 8
 
 � 
 �n 8 
 �o 4 o�m 8
 o 
 o� 
 �n 8 
 �o  (35) 

the Lemma equation in robot arm system can be written as follows U% � ^o�m 8
 o 
 |� 
 �8 
 �| 
 >_F , F � �, �, p, q, …  (36) 

the equation (11) can be written as U% r s^�m 8
 
 � 
 �8 
 �_Fs 
 >F  (37) 

therefore, it can be shown that 

g
 4 � t >F
 

F=�
|8F|  (38) 

Consequently the equation (38) guaranties the stability of the Lyapunov equation. Figure 1 is 
shown pure sliding mode controller, applied to robot arm. 

 
 

FIGURE 1: Block diagram of a sliding mode controller: applied to robot arm  

 



Farzin Piltan, Javad Meigolinedjad, Saleh Mehrara & Sajad Rahmdel 

 

International Journal of Robotics and Automation (IJRA), Volume (3) : Issue (3) : 2012                              198 

3. METHODOLOGY: ROBUST BASELINE ON-LINE TUNING FOR STABLE 
SLIDING MODE CONTROLLER 

Sliding mode controller has difficulty in handling unstructured model uncertainties. It is possible to 
solve this problem by combining sliding mode controller and baseline error-based tuning method 
which this method can helps to eliminate the chattering in presence of switching function method 
and improves the system’s tracking performance by online tuning method. In this research the 
nonlinear equivalent dynamic (equivalent part) formulation problem in uncertain system is solved 
by using on-line linear error-based tuning theorem. In this method linear error-based theorem is 
applied to sliding mode controller to adjust the sliding surface slope.  Sliding mode controller has 
difficulty in handling unstructured model uncertainties and this controller’s performance is 
sensitive to sliding surface slope coefficient. It is possible to solve above challenge by combining 
linear error-based tuning method and sliding mode controller which this methodology can help to 
improve system’s tracking performance by on-line tuning (baseline performance based tuning) 
method. Based on above discussion, compute the best value of sliding surface slope coefficient 
has played important role to improve system’s tracking performance especially when the system 
parameters are unknown or uncertain. This problem is solved by tuning the surface slope 
coefficient (.) of the sliding mode controller continuously in real-time. In this methodology, the 
system’s performance is improved with respect to the pure sliding mode controller. Figure 2 
shows the baseline error-based tuning sliding mode controller. Based on (23) and (27) to adjust 

the sliding surface slope coefficient we define uv�w|b� as the fuzzy based tuning. 
 
 

 
 

FIGURE 2: Block diagram of a linear error-based sliding mode controller: applied to robot arm 

 !T��|.� � .)x       (39) 

If minimum error (.y) is defined by; .y � ;9Z zF  �l8%{s!T��|.� � !���|� (40) 

Where b} is adjusted by an adaption law and this law is designed to minimize the error’s 
parameters of . � .y. adaption law in linear error-based tuning sliding mode controller is used to 
adjust the sliding surface slope coefficient. Linear error-based tuning part is a supervisory 
controller based on the following formulation methodology. This controller has three inputs 
namely; error �c�, change of error (c
) and the integral of error (∑ c) and an output namely; gain 
updating factor�~�. As a summary design a linear error-based tuning is based on the following 
formulation: 

x � �U. : 
 :
 
 �U��
� ∑ :� � � U. : 
 �U��

� ∑ : ) 
(41) 
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8I �iF : � x. .: 
 :
 � 8I �iF :
� �0U. : 
 :
 
 �U��

� t :2 � 0U. : 
 �U��
� t :2�.: 
 :
  

  

.)% : � .. x � .)% : � .�0U. : 
 :
 
 �U��
� t :2 � 0U. : 
 �U��

� t :2� 
 
Where �~� is gain updating factor, (∑ c) is the integral of error, (c
) is change of error, �c� is error 
and K is a coefficient.  
 
Proof of Stability: The Lyapunov function in this design is defined as 

g � �� 8)�8 
 �� t ��,�
�

�=�
�). �� 

(42) 

where ��� is a positive coefficient, � � .y � ., �y is minimum error and b is adjustable parameter. 

Since �
 � 2h is skew-symetric matrix; 

8)�8
 
 �� 8)�
 8 � 8)��8
 
 g8�  (43) 

If the dynamic formulation of robot manipulator defined by � � �����	 
 g��, �
 ��
 
 ���� (44) 

the controller formulation is defined by � � �S �	 9 
 gS�
 9 
 �S � .8 � U (45) 

According to (43) and (44) �����	 
 g��, �
 ��
 
 ���� � �S �	 9 
 gS�
 9 
 �S � .8 � U (46) 

Since �
 9 � �
 � 8 and �	 9 � �	 � 8
   �8
 
 �g 
 .�8 � ∆! � U  (47) 

�8
 � �! � U � g8 � .8 
The derivation of V is defined 

g
 � 8)�8
 
 �� 8)�
 8 
 t ��,�
�

�=�
�). �
 �  (48) 

g
 � 8)��8
 
 g8� 
 t ��,�
�

�=�
�). �
 � 

 
Based on (46) and (47) 

g
 � 8)��! � U � g8 � .8 
 g8� 
 t ��,�
�

�=�
�). �
 � (49) 

where ∆u � ������	 
 h��, �
 ��
 
 ����� � ∑ .)��=� x       
 

 g
 � t^8���!� � U��_�

�=�
�8).8 
 t ��,�

�

�=�
�). �
 �  

 
suppose � is defined as follows 

x� � �0U. : 
 :
 
 �U��
� t :2 � 0U. : 
 �U��

� t :2�  (50) 
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according to 48 and 49; 

g
 � t �8���!� � .)U. : 
 :
 
 �U��
� t :���

�=�
�8).8 
 t ��,�

�

�=�
�). �
 � (51) 

Based on � � �y � � 7 � � �y � � 

g
 � t �8���!� � �y)��0U. : 
 :
 
 �U��
� t :2 � 0U. : 
 �U��

� t :2�� 
 �)�x
�

�=�
� �0U. : 
 :
 
 �U��

� t :2 � 0U. : 
 �U��
� t :2��� �8).8


 t ��,�
�

�=�
�). �
 � 

 

(52) 

g
 � t �8���!� � �.y�)�0U. : 
 :
 
 �U��
� t :2 � 0U. : 
 �U��

� t :2����

�=�
�8).8


 t ��,�
�

�=�
��)��0U. : 
 :
 
 �U��

� t :2 � 0U. : 
 �U��
� t :2� 
 �
 ��� 

 

where �
 � � �lU. : 
 :
 
 �U��
� ∑ :| � lU. : 
 �U��

� ∑ :|� is adaption law, ��
 � ��
 � � ��lU. : 
 :
 

�U��

� ∑ :| � lU. : 
 �U��
� ∑ :|�  g
  is considered by 

g
 � t�8�
z

�=�
∆!� � 0�.�y�)�0U. : 
 :
 
 �U��

� t :2 � 0U. : 
 �U��
� t :2�2� � 8).8  (53) 

 
The minimum error is defined by 

:z� � ∆!� � 0�.�y�)�0U. : 
 :
 
 �U��
� t :2 � 0U. : 
 �U��

� t :2�2 
(54) 

Therefore g
  is computed as 

g
 � t�8�
z

�=�
:z�� � 8).8 

(55) 

4 ∑ |8�z�=� ||:z�| � 8).8      
� t |8�

z

�=�
||:z�| � .�8��   

 

      � t |8�
z

�=�
|`o:z�o � .�8�a   (56) 

 

4. RESULTS 
This part is focused on compare between Sliding Mode Controller (SMC) and baseline error-
based tuning Sliding Mode Controller (LTSMC).  These controllers were tested by step 
responses. In this simulation, to control position of PUMA robot manipulator the first, second, and 
third joints are moved from home to final position without and with external disturbance. The 
simulation was implemented in Matlab/Simulink environment. 
  
Trajectory performance, torque performance, disturbance rejection, steady state error and 
RMS error are compared in these controllers. These systems are tested by band limited white 
noise with a predefined 40% of relative to the input signal amplitude. This type of noise is used to 
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external disturbance in continuous and hybrid systems and applied to nonlinear dynamic of these 
controllers. 

 
Tracking performances: In sliding mode controller; controllers performance are depended on 
the gain updating factor (�) and sliding surface slope coefficient (b). These two coefficients are 
computed by trial and error in SMC. The best possible coefficients in step SMC are; b� � 1 , be �6, b� � 8; �  � �¡ � �� � 10; �� � �e � �� � 0.1. In linear error-based tuning sliding mode 

controller the sliding surface gain  is adjusted online depending on the last values of error �c�, 
change of error (c
) and the integral of error (∑ c) by sliding surface slope updating factor (~�.   
Figure 3 shows tracking performance in baseline error-based tuning sliding mode controller 
(LTSMC) and sliding mode controller (SMC) without disturbance for step trajectory.  

 
 

FIGURE 3: LTSMC and SMC for first, second and third link step trajectory performance without disturbance 

 
 
Based on Figure 3 it is observed that, the overshoot in LTSMC is 0% and in SMC’s is 1%, and the 
rise time in LTSMC’s is 0.48 seconds and in SMC’s is 0.4 second. From the trajectory MATLAB 
simulation for LTSMC and SMC in certain system, it was seen that all of two controllers have 
acceptable performance. 
 
Disturbance Rejection: Figure 4 shows the power disturbance elimination in LTSMC and SMC 
with disturbance for step trajectory. The disturbance rejection is used to test the robustness 
comparisons in these two controllers for step trajectory. A band limited white noise with 
predefined of 40% the power of input signal value is applied to the step trajectory. It found fairly 
fluctuations in SMC trajectory responses.  
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FIGURE 4: LTSMC and SMC for first, second and third link trajectory with 40%external disturbance: step 
trajectory 

 
Based on Figure 4; by comparing step response trajectory with 40% disturbance of relative to the 
input signal amplitude in LTSMC and SMC, LTSMC’s overshoot about (0%) is lower than SMC’s 
(8%). SMC’s rise time (0.5 seconds) is lower than LTSMC’s (0.8 second). Besides the Steady 
State and RMS error in LTSMC and SMC it is observed that, error performances in LTSMC 
(Steady State error =1.3e-12 and RMS error=1.8e-12) are about lower than SMC’s (Steady 
State error=10e-4 and RMS error=11e-4). Based on Figure 4, SMC has moderately oscillation in 
trajectory response with regard to 40% of the input signal amplitude disturbance but LTSMC has 
stability in trajectory responses in presence of uncertainty and external disturbance. Based on 
Figure 4 in presence of 40% unstructured disturbance, LTSMC’s is more robust than SMC 
because LTSMC can auto-tune the sliding surface slope coefficient as the dynamic manipulator 
parameter’s change and in presence of external disturbance whereas SMC cannot. 
 
Torque Performance: Figure 5 and 6 have indicated the power of chattering rejection in LTSMC 
and SMC with 40% disturbance and without disturbance. 
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FIGURE 5:  LTSMC and SMC for first, second and third link torque performance without disturbance 

 
Figure 5 shows torque performance for first three links robot manipulator in LTSMC and SMC 
without disturbance. Based on Figure 5, LTSMC and SMC give considerable torque performance 
in certain system and all two controllers eliminate the chattering phenomenon in certain system. 
Figure 6 has indicated the robustness in torque performance for three links robot manipulator in 
LTSMC and SMC in presence of 40% disturbance. Based on Figure 6, it is observed that SMC 
controller has oscillation but LTSMC has steady in torque performance.  This is mainly because 
pure SMC are robust but they have limitation in presence of external disturbance. The LTSMC 
gives significant chattering elimination when compared to SMC. This elimination of chattering 
phenomenon is very significant in presence of 40% disturbance. This challenge is one of the most 
important objectives in this research. 
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FIGURE 6: LTSMC and SMC for first, second and third link torque performance with40% disturbance 

 
SMC has limitation to eliminate the chattering in presence of highly external disturbance (e.g., 
40% disturbance) but LTSMC is a robust against to highly external disturbance.   
 
Steady state error: Figure 7 is shown the error performance in LTSMC and SMC for three links 
robot manipulator. The error performance is used to test the disturbance effect comparisons of 
these controllers for step trajectory. All three joint’s inputs are step function with the same step 
time (step time= 1 second), the same initial value (initial value=0) and the same final value (final 
value=5). Based on Figure 3, LTSMC’s rise time is about 0.48 second and SMC’s rise time is 
about 0.4 second which caused to create a needle wave in the range of 5 (amplitude=5) and the 
different width. In this system this time is transient time and this part of error introduced as a 
transient error. Besides the Steady State and RMS error in LTSMC and SMC it is observed that, 
error performances in LTSMC (Steady State error =1.8e-10 and RMS error=1.16e-12) are 
about lower than SMC’s (Steady State error=1e-8 and RMS error=1.2e-6).  



Farzin Piltan, Javad Meigolinedjad, Saleh Mehrara & Sajad Rahmdel 

 

International Journal of Robotics and Automation (IJRA), Volume (3) : Issue (3) : 2012                              205 

 
 

FIGURE 7:  LTSMC and SMC for first, second and third link steady state error without disturbance: step 
trajectory 

 
The LTSMC gives significant steady state error performance when compared to SMC. When 
applied 40% disturbances in LTSMC the RMS error increased approximately 0.0164% (percent of 

increase the LTSMC RMS error=
�¢£% ¥��¦§@¨B©CA ª�« A@@¬@

©¬ ¥��¦§@¨B©CAª�« A@@¬@ � �.�­A��e
�.�A��e � 0.0122%) and in SMC the 

RMS error increased approximately 9.17% (percent of increase the PD-SMC RMS 

error= �¢£% ¥��¦§@¨B©CA ª�« A@@¬@
©¬ ¥��¦§@¨B©CA ª�« A@@¬@ � ��A�¢

�.eA�­ � 9.17%). In this part LTSMC and SMC have been 

comparatively evaluation through MATLAB simulation, for 3DOF robot manipulator control. It is 
observed that however LTSMC is dependent of nonlinear dynamic equation of robot manipulator 
but it can guarantee the trajectory following and eliminate the chattering phenomenon in certain 
systems, structure uncertain systems and unstructured model uncertainties by online tuning 
method.  
 

5. CONCLUSION  
In this research, a baseline error-based tuning sliding mode controller (LTSMC) is design and 
applied to robot manipulator. Pure sliding mode controller has difficulty in handling unstructured 
model uncertainties. It is possible to solve this problem by combining sliding mode controller and 
linear error-based tuning. The sliding surface gain (b) is adjusted by linear error-based tuning 
method. The sliding surface slope updating factor (~) of linear error-based tuning part can be 
changed with the changes in error, change of error and the integral (summation) of error. Sliding 
surface gain is adapted on-line by sliding surface slope updating factor. In pure sliding mode 
controller the sliding surface gain is chosen by trial and error, which means pure sliding mode 
controller had to have a prior knowledge of the system uncertainty. If the knowledge is not 
available error performance and chattering phenomenon are go up. In linear error-based tuning 
sliding mode controller the sliding surface gain are updated on-line to compensate the system 
unstructured uncertainty. The simulation results exhibit that the linear error-based tuning sliding 
mode controller works well in various situations.  
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