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Abstract 
 

We have presented a methodology for compensating joint configuration by composite weighting 
in different sub spaces. It augments the weighted least norm solution by weighted residual of the 
current joint rate and preferred pose rate in null space, so that we can arrive at a solution which is 
able to handle both joint limits and preferred joint configuration simultaneously satisfying the 
primary task. The null space controller is formulated in conjunction with the work space controller 
to achieve the objective. The contribution of null space has been discussed in the formulation in 
two different situations including joint limits, workspace and near configuration singularities. 
 
Keywords: Null Space Controller, Weighted Least Norm, Joint Limit, Singularity, Joint 
Configuration. 

 
 

1. INTRODUCTION 

A robotic manipulator in general sense or an articulated serial structure in particular is 
kinematically redundant when the number of operational space variables necessary to specify a 
given task, is less than the number of joints. Redundancy leads to infinite solutions for the joint 
space but offers greater flexibility and dexterity in motion as different constraint based  or goal 
based criteria can be formulated as sub tasks in the solution. Two kinds of approaches have been 
reported in the literature to deal with this situation. One is set to exploit the null space of the 
Jacobian matrix in the homogeneous solution that infuses self motion of joints without affecting 
the task space. Typical method of this kind is gradient projection method (GPM) [1][2]. In GPM 
the anti-gradient of a quadratic cost function, is projected in the null space of the task Jacobian, 
which is reminiscent of the projected gradient method for constrained minimization. The other 
approach is weighted least norm (WLN) approach [3][4], which minimizes the weighted norm of 
joint rate. In both the cases the primary task is to follow the prescribed trajectory and there may 
be multiple secondary tasks or nested subtasks with priority fixation [5] [6]. 
 
GPM has been used in Joint Limit Avoidance (JLA), obstacle avoidance [7], visual servoing [4]. 
WLN which was introduced in JLA in [3], has been successfully exploited by others with single or 
multiple criteria and Close Loop Inverse Kinematics (CLIK)[8]. Null space based motion control [9] 
has been studied with configuration optimization [10], influence of un-weighted and inertia 
weighted pseudoinverse [11], proportional-integral-derivative (PID) controller considering 
passivity [12], task priority implementation based on behavioral scheme [13]. An elaborate 
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discussion with illustrations on various pros and cons of different approaches for operational 
space control with null space contributions has been reported in [14]. 
 
In practice, many subtasks are often needed for the control of manipulator. For example both the 
joint limits and the joint configuration became the basic requirements where human motion 
analysis is concerned. In many cases, local optimality of GPM may not provide good performance 
to all prioritized subtasks. WLN method is effective only for the joints limits but direct optimization 
of the weighted norm sum of all tasks may lead to the poor performance for all tasks. The ability 
of WLN to effectively handle joint limits and the self motion from null space, motivate us to 
presents a methodology of composite weighted least norm (CWLN) solution in conjunction with 
GPM. It is so called because the formulation tries to minimize the primary task objective of 

weighted norm of joint rate in range space and the weighted residual of the current joint rate ( )q&  

and preferred pose rate ( )rq&  in null space (hence composite weighting in different sub spaces) so 

that we can arrive at a solution which is able to handle both joint limits and preferred joint 
configuration simultaneously satisfying the primary task. 
 
This paper is organized as follows: Section II formulates the CWLN method from classical 
redundancy control methods. Section III discusses stability of the CWLN method and its 
regularized version. The case studies are illustrated in Section IV. Section V concludes the paper. 

 

2. COMPOSITE WEIGHTED LEAST NORM  
We focus on first and second order kinematics for the time variant task space defined as 

1( ) mx t ×∈ℜ  and joint space 1( ) nq t ×∈ℜ  related by the direct kinematic  non linear and 

transcendental vector function ( )tk q , whose time differentiation will define the non square 

analytic Jacobian matrix ( ) ( ) /  ; ij j m n
t t iJ q J q k q n > m×∂ ∂ ∈ℜ ∀� � , with its assumption of bounded 

higher order terms and linearization. We denote the desired task space positions, velocities, and 

accelerations as ,d d dx x and x& && respectively and reference or preferred joint configuration as rq  

Dropping the subscript t for brevity, the classical forward kinematics differential relationships can 
be expressed as  

 

( ) ; ( ) ( , )x J q q and x J q q J q q q= = + && & && && & &                                               (1) 

 
 

and inverse kinematics least norm (LN) general solution as  

 

† † † †
1 2( ) ; ( ) ( )p h dq q q J x I J J q J x Jq I J Jξ ξ= + = + − = − + −&& & & & && && &                            (2)   

 

where ( )pq J∈ℜ&  is particular solution, ( )hq J∈ℵ&  is  homogeneous solution, † 1( )  T TJ J JJ −
�  is 

the right pseudoinverse of the Jacobian, 1
1 2

nandξ ξ ×∈ ℜ are arbitrary vectors and †( )I J J−  is the 

null space projector. The Weighted Least Norm (WLN) solution formulates the problem as 
2

1 1( )[ ( )] ( ) ( )[ ], Tmin q q min q q min q q W q= =& & & & & & &� �H st ( ) 0x Jq− =& & , 1
n nW ×∀ ∈ � is the symmetric positive 

definite weighing matrix. To stabilize the ill posed condition of LN or WLN solution near 
singularities, Tikhonov like regularization has been used, which makes a trade off between 
tracking accuracy and the feasibility of the joint velocities, known as classical Damped Least 
Square (DLS) solution. The trade off parameter is the damping factor α . If the objective is 

specified through a configuration rate dependent performance criteria 2 ( )q&H , set to be the closest 

to some particular pose, hence forth called the reference configuration ( )
r

q  the problem can be 
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reformulated as 2 2)[ ( )] ( )[(1/ 2)( ) ( )];T
r rmin(q q min q q q W q q= − −& & & & & & &H  .   ;s t Jq x=& &  2

n nW ×∀ ∈ �  .In our  

approach an augmented objective function has been formulated by combining configuration rate 

dependent performance criteria 2 ( )q&H  for pose optimization and 1( )q&H  for joint limit avoidance, 

subjected to the requirement of primary task space ( ) 0x Jq− =& & , as 

2 1 2( ) ( ) ( ) ( , ) ,n nq q q and W W ×∀ = + ∀ ∈& & & �3 1H H H  henceforth called as Composite Weighted Least 

Norm Solution (CWLNS) as, 
 

1 2( ) ( )  ( )[(1 / 2) (1/ 2)( ) ( )];  .   T T
r rmin q q min q q W q q q W q q s t Jq x= + − − =& & & & & & & & & & &3H                      (3) 

 

To solve this optimization problem with equality constraint, it should satisfy both the necessary 

condition 0q L∇ =&  and sufficient condition 2
0 q L∇ >& , where the Lagrangian is 

( , ) ( ) ( )L q q Jq xλ λ= + −& & & &3H  and we can directly evaluate 2
1 2( ) 0 q L W W∇ = + >& , which is true for 

minimization. Putting the value of q&  from 0q L∇ =&  in the expression 0Lλ∇ = , we get λ .  

Substituting λ  back in q&  from 0q L∇ =& , and 1 1 1( ) ,T TJ W J JW J− − −∀ h
�   1 2( )W W W∀ +� , 1 ,rqξ∀ &�  

the general solution of CWLS reduces to [Appendix-I.A] 
 

1
2 1( )q J x I J J W W ξ−= + −h h

& &                                                    (4) 

 

It is trivial to show 1
2( )I J J W W−− h  is the null space projector of reference joint rate vector rq& and 

hence no impact on task space as JJ I=h . The optimization in the direction of the anti-gradient 

of scalar configuration dependent performance criteria 3 ( )qH can also be set up by minimizing 

3 ( )qH for weighted reference configuration ( )
r

q  as  
 

 

3 2 3 2
( ) (1 / 2)( ) ( ); ( ) ( )

T

r r q r
q q q W q q q W q q= − − ⇒∇ = −H H                                 (5) 

 

and for  a positive scalar 
H

k  and 1
1 1 2 2 3 ( ) ( )H qk W W W qξ −′∀ − + ∇� H  the GPM flavor of CWLS  

formulation is 
 

1
2 1 2( ) ; ( ) ( )dq J x I J J W W q J x Jq I J Jξ ξ− ′= + − = − + −h h h h&& & && && &                                (6) 

 

Using Eq.(2), the relation h hJJ JJ= −& &  and after simplification we can establish the relation 

between 
2

ξ  and 1ξ  as.  

2 1 1
( )hJ J qξ ξ ξ ′= − + && &                                                             (7) 

 

The diagonal elements 
1

( )iw  of 
1

W  has been utilized to implement JLA [2][3] with a modified 

sigmoid function to vary smoothly from -1 to 1.  If τ  is the threshold parameter for each joint, the 

activation limits are defined as   , ,( )th
i max i maxq q τ= −  and , ,( )th

i min i minq q τ= + . If 
, ,

( )
th th th

i i max i min
q q q∆ = −  is 

the activation range of i
th
 joint, then 1 | ( ) |,  where     

i i
w h q a large positive gainµ µ= + = ,  

, ,

,

0  0 ( )( )/

 

     
1

( ) 0           ; , 0
1

         

th th th

i max i i i min i

th
i i i min

i i i a q q q q q

i

q q

h q a
e

otherwise

ϕ ε

ε ϕ ε ϕ

ϕ
− − ∆

− ∀ < +


∀ − < < ∀ = ∀ >
+



�                 (8) 

In general µ  should be large enough to make the 1/
i

w  near to zero when JLA is activated, so 

that 0
i

q →&  as in this case ( )
i

h q  is bounded between 1± . In this case the role of ε  is to 
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smoothen ( )
i

h q  when changes from 
i

ϕ  to 
i

ϕ− . Away from the joint limits when 0
i

ϕ ≈ , 
i

w  may 

still have oscillations due to  large gain µ  and oscillatory 
i

q , which is smoothened by 

implementing 
0

1 4eε ≈ − .  

 

The role of the term 1
1 2 2( )W W W−+ in the null space of Jacobian needs to be discussed. Starting 

with 
2 1

[ , ]
n n

W W I ×∈ , if we increase
1

W ( which will occur during JLA activation), keeping 
2

W constant 

then since 
1

|| ||W → ∞ , 1
1 2 2|| ( ) || 0W W W−+ →   resulting diminishing contribution from null space. On 

the other hand, if we increase
2

W , keeping 
1

W constant, which will occur most of the time when the 

joint is away from its limits, 1
1 2 2|| ( ) || 1W W W−+ → , since

1 2 2
( )W W W+ ≈ . 

 
3. CONTROL SCHEMES AND STABILITY 
Introducing Proportional ( )

P
K  and Derivative ( )

D
K  error control in Eq.(6) by positive definite 

diagonal gain matrices  and task space error ( )
d d

e x x x qκ− = −� , we can arrive at the second 

order close loop kinematic scheme (Figure-1[a]) with error system [9][11][13][14] 
 

2
( ) ( ) ; 0h h

d D P D P
q J x Jq K e K e I J J e K e K eξ= − + + + − + + =&&& && & & && &                                   (9) 

 

 
 
 
 

  
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 FIGURE 1: [a] Schematic implementation for 2nd order resolution in CWLS solution. [b] 

Null space controller schematic. Nφ  is the null space contribution. 

 

[a] 

[b] 
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Continuous time stability can be analyzed by Lyapunov second or direct method for Eq.(9) by 

selecting Lyapunov candidate function 
2

( ) (1/ 2) TV e e Ke V= + , ( ) 0V e∀ >  and 2

2
(1/ 2) T

NS
V q K qβ= & &  

resulting  
2

( ) TV e e Ke V= +& && . 
2

V  is included to ensure that the system does not go unstable in the 

Null Space Motion. K  , 
NS

K   are symmetric positive definite diagonal matrices for task space and 

null space respectively. Substituting the value of e and e&  in expression of ( )V e&  and after 

simplification and substitution of 
1

;   ( ) = O h

n n
JJ I and J I J J ξ×= − h we can establish 

2
( )

T T

p
V e e K K e V= − +& & .Considering the case of a constant reference ( 0)

d
x =& , the function ( )V e&  is  

negative definite, under the assumption of full rank for J and β  is so chosen such that 
2

V&  is 

negative , indicates  solution is stable in Lyapunov sense.  If we consider the regularized version 

[8]  of CWLN solution, *
;

h
JJ I≠Q  ( - )hJ I J J O= , and *( - )hI JJ O≠  the error system reduces to  

 
*[ ]; ( )h

D P d D P
e K e K e N x Jq K e K e I JJ O+ + = − + + ∀ − ≠N&&& & && & & �                                  (10) 

 
In defining the null space controller (Figure-1[b]), the first question that has to be answered is how 

many sub tasks the null space can simultaneously handle?  If we choose k  sub tasks each of 

rank
k

r , the limit is 
1

k

i

i

r n
=

=∑ . Once all the dof’s are exhausted, it is useless to put additional low 

priority tasks, as their contribution will be always projected in to null space or they can even 
corrupt the primary task. Dropping the regularizing term for the time being and defining the null 

space error 
N

e , the null space contribution as 
N

φ  is   

 

1 1 1
( )[ ( )]; ( )( )h h h

N N N N
I J J K e J J q e I J J qφ ξ ξ ξ= − + − − ∀ − −& & & &�                      (11) 

 

Defining a Lyapunov positive definite candidate function ( ) (1/ 2) T
N N NV e e e= , or ( ) T

N N NV e e e=& &  , 

substituting the values of  Ne&  in ( )NV e&  and after simplification we can establish T
N N NV K e e= −& , 

[Appendix-I.B] which  is  negative definite for positive definite symmetric null space proportional 

gain matrix NK , which implies that the proposed controller in Eq.(11) stabilizes null space motion 

as long as the Jacobian is full rank. 

 
4. RESULTS AND DISCUSSION 

To illustrate the performance, we discuss the results of null space optimized _ ( )cwls optq t  form in 

Eq.(6) and its canonical _ ( )cwls refq t  form  in Eq.(4), for a planar serial 3RRR manipulator following 

two distinct types of trajectories, namely, the trajectory resembling the motion of finger tip ( 1Γ )  

and lamniscate trajectory ( sΓ ). The particular solution _ ( )cwls pq t  and CWLN solution with joint 

limit activation _ _ ( )cwls opt jlaq t  are also plotted to understand the contribution of null space and self 

motion.  
 
In both the cases the link parameters in Denavit Hardenberg standard convention 

is 1 2 3[1.5,0.9,0.7] , [0,0,0], [0,0,0] [ , , ]i i i il cm d and q q qα θ= = = = . 1Γ is analytically generated by joint 

space vector 2 2 20.3 0.2;0.5 0.5;0.7 0.3( ]) [tq t t t t= + + +  and the reference joint space vector is 

0.4 0.2;1.0 0.5( ) [ ;1.0 0.5]rq t t t t= + + +  with values far away from ( ).tq t  JLA parameters in  Eq.(8) 

are 0.1,τ = 100,a = 0.3,ε = 0 1 4,eε = −  T[0.8  1.8 2.6] ,maxq = T[ 0.5  0.5 0.5] ,minq = − − −   1 7.eµ = +  

Initial values of 
1 3 3

W I ×=  and 
2

[45.0 45.0 45.0],W diag=  resulting 1
1 2 2( ) 0.978.W W W−+ =  The task 

space controller parameters are [1 1]*0.07 / ;PK diag dt= , [1 1]*0.9DK diag=  and 
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[1 1]*0.1.IK diag=  The null space controller parameters are 

0.95,Hk = [45 45 45],NPK diag= [4 4 4]NDK diag=   [10 10 10]NIand K diag= . 

 

_ ( )cwls optq t  solution for 1Γ recovers the joint configuration better than _ ( )cwls refq t  and it is in good 

agreement with ( )tq t  Figure-2[a]-[c]. The particular solution  _ ( )cwls pq t  (range space) fails to 

follow ( )tq t  after 0.5 .t s≈  The null space error 
N

e  for 1q , rapidly converges from -0.7 at 0t s=  to 

-0.01 at 0.02t s=  and remains steady with a peak  response at 1.7t s=  after which it again 

converges to zero ( Figure-2[e]). The peak in 
N

e  time history corresponds near configuration 

singularity in joint space between 1.3 1.7s t s≤ ≤ , in which minσ ( min svd(J)) drops from 1.2 to 

0.56. The effect of 
ND N

K e&  term is more prominent in contributing to
2

ξ  and finally in null space 

acceleration 
a

φ .  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The contribution of 
1

NI N
K e dτ

τ ∫
 is insignificant here and contribution from 

1
( )hJ J qξ −& &  is difficult to 

interpret in this case as its value is seen rising only during the configuration singularity period. 

The net effect of these terms is reflected in
a

φ . Here  
V

φ  is  used to evaluate ( )q t&  as a 1st order 

resolution and from which we can evaluate 
N

e  and subsequently 
a

φ  in the 2nd order resolution. 

Thus the null space interaction between 1.3 1.7s t s≤ ≤  , which raises 
V

φ and  
a

φ  shifts the 

recovered joint space trajectory towards  rq  and  tq  in _ ( )cwls optq t . This response can be utilized 

FIGURE 2: [a]-[c]: Time history of joint configurations with null space contribution for  finger tip 

trajectory. Horizontal dotted lines represents joint activation threshold values th
maxq  and th

minq .[d] 

Time history of task space error norm || ( ) ||e t .[e]  Null space response for 1q  with out JLA, left Y-

axis for variables 
N V

e and null space velocity φ . 
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for an event where some preferred poses are desired in joint space, keeping the task space error 

minimum. Increase in the value of the scalar Hk , results in initial oscillations in the solution as 

reflected in the Figure-2[d]. 
 

To observe the response of 
1

W  near joint limits, its normalized value is additionally plotted in 

Figure-2[a]-[c]. When 1q , reaches its joint threshold limit 1, 0.7th
maxq rad= , at 1.26t s= , the normalized 

value of 1

1
w  in Eq.(8) increases from zero at 1.17t s= to 0.6 at 1.26t s= . The first diagonal element 

of 1
1 2( ) 0W W −+ → , arresting further motion. The null space controller contribution is drastically 

scaled down as 1
1 2( ) 0W W −+ → ,   and the solution finally dominated by the particular solution. 

Arresting of motion near 1,
th

maxq  results oscillations in joint accelerations in second order 

formulation which amplifies oscillations in 1ϕ , by the term µ . This is because we have formulated 

the JLA algorithm based on the joint configuration as ( , , , , )th th

t t max max min min
f q q q q qϕ = .  This will only 

occur when  1q  over shoots  1,
th

maxq  in thk time step gets damped and returned back to lower value 

in ( 1)thk +  time step, until it is gradually damped out. This behavior has been reduced by 

implementing the term 0ε in Eq.(8).  For joint 2, the _ ( )cwls pq t  solution overshoots the limit and 

_ ( )cwls refq t  touches the maximum limit.  For joint 3, JLA is not actuated for _ ( )cwls optq t  as it is well 

under actuation threshold limit. 
 

For the Regularized Composite Least Square (RCWLS) solution, the lamniscate trajectory ( sΓ ) 

simulates  the condition of reaching workspace singularity condition, crossing it and then moving 
away form it as the trajectory is closed and has  two distinct lobes which results in multimodal 

joint space trajectories. Moreover this particular case is extreme as ( )tq t  and ( )rq t  differs both 

in amplitude and phase. The iteration started with 
1 3 3

,W I ×=  
2

[75.0 75.0 75.0],W diag=  

, [-1.5 - 0.5 - 0.5],i minq =    =[2   2.3   2.3],i,maxq  0.25 ,radτ =  075;   0.4;   1 4;  1 7,a e eε ε µ= = = − = +  

[45 45],PK diag= [0.45 0.45],DK diag=  and [0.1 0.1].IK diag=  The null space controller 

parameters are 0.95,Hk =  [45 45 45],NPK diag=  [2.5 2 . ,.5 2 5]NDK diag=  and 

[1.0 1.0 1.0]NIK diag= . 

 
The first workspace singularity crossing occurs between 0.08 0.3s t s≤ ≤  when the tip crosses 

from A to B in sΓ (Figure-3[d]) and second workspace singularity occurs between 1.1 1.5s t s≤ ≤  

when the tip crosses from C to D.  In between these two, the solution faces near configuration 
singularity when it crosses from P to Q between 0.6 0.8s t s≤ ≤  and from R to S 

between1.6 1.8s t s≤ ≤ . It is to be mentioned here that initial high oscillating acceleration between 

0.0 0.05s t s≤ ≤  in || ||e  is due to the task space gains. In the near configuration singularity cases 

(pq and rs) in Figure-3[e] which lowers ( )
m

tσ  between 0.6 0.8s t s≤ ≤ and 1.6 1.8s t s≤ ≤ , the 

damping parameter ( )tα  does not interfere 0.5ε∀ = , the threshold value to initiate damping and  

( ) ( , ).mt fα σ ε=  

 

_ _ ( )cwls opt jlaq t  solution increased || ||e   between 1.3 1.5s t s≤ ≤  due to the simultaneous 

occurrences of JLA for 
3

q and singularity crossings from C to D.  It should be noted that in the 

expression of * 1 1 2 1

1 2 1 2
( ) ( ( ) )h T T

m m
J W W J J W W J Iα− − −

×= + + + , increase of ( )tα  to 
max

α  during 

singularity  keeping 
1 2

W and W   to its initial values , will reduce the over all value of *h
J . On the 

contrary, during JLA, increase of the diagonal element 
1,3

w  of the weighing matrix 
1

W   to a very 

high value (Oe+7), will only make the third row of *h
J   approaching to zero in order to make that 
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particular joint immobile but the other  two rows of *h
J  may increase or decrease as per the 

action of the task space controller.  
 

So the combined effect is overall damping of *h
J  due to ( )tα  and the third row is approaching 

zero. This increases the task space error between 1.3 1.5s t s≤ ≤  in comparison to _ ( )cwls optq t , 

where only singularity avoidance is active. The null space contribution from ( )v aandφ φ has been 

considerably diminished as high gain of 1W  during JLA makes 1
1 2( ) 0W W −+ →  and 2W  remains 

constant in the null space. Further increase of value of 2  HW and k  and null space gain 

parameters results in increased oscillation in initial joint velocity and acceleration and also 

increases || ||e .The task space and null space gains are kept on the higher side in the simulation 

which causes initial oscillations in joint space in some cases. It has been verified that reducing 
these gains eliminates these initial oscillations except during near singular or singularity 

crossings. The role of the weighing matrices 1 2W and W has been defined with a bias to higher 

gain of 2W  which will amplify the null space contribution and in doing this the 1
1 2 2( )W W W−+  term 

is advantageously used. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

In a hypothetical situation, we want to see the response when the reference signal ( )rq in joint 

space approximates the analytical joint trajectory ( 0.9 ),r tq q=  as in the earlier cases  rq  is 

generated with considerably deviation from tq . For trajectory 1Γ , ( Figure-4: Top row)   both  

 

FIGURE 3: [a]-[c]: Time history of joint configurations with null space contribution for 

lamniscate trajectory sΓ . Horizontal dotted lines represents joint activation threshold values 

th
maxq  and th

minq .[d] Trajectory trace for the solutions. Analytical trajectory generating workspace 

singularity sΓ  is OABPQDCRSO. [e] Time histories for || ||e , α  and ( )m min svd Jσ �  values. 
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_ ( )cwls optq t  and  _ ( )cwls refq t  solutions remain in between tq and rq , and the difference between 

them  can be neglected where as the particular solution deviates  significantly  tq  as before. 

 

 Similar responses obtained from trajectory  
s

Γ  for lamniscate path (Figure-4: Bottom row) for 

0.9r tq q= .  In this situation, the null space error ,
N

e  for trajectory 1Γ ,  remains stable at 0≈  until 

it briefly oscillates in near configuration singularity period between  1.3 1.7s t s≤ ≤ (Figure-5: Left) 

and between 0.6 0.7s t s≤ ≤  and 1.5 1.7s t s≤ ≤  for lamniscate trajectory 
s

Γ  (Figure-5: Right). 

During these   time periods there is a  surge in 
V

φ and  
a

φ  injecting the null space contribution in 

the solution.  For the remaining time in all cases , the null space contribution is 0≈  , which is 

desired as the recovered joint space trajectory is in between tq and rq  (Figure-4: Top Row). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 4: Top: Time history of joint configurations for trajectory 
1

Γ with the special case 

of 0.9 .r tq q=  Bottom: Time history of joint configurations for trajectory 
s

Γ with the special 

case of 0.9 .r tq q=  All results are for  _ ( )cwls optq t  solution. Columns from left represent 

joints 1 2 3,q q and q respectively. 

FIGURE 5: Left :  Null space response for 
1

Γ when ( 0.9 )r tq q=  Left Y-axis for variables 

N V
e and φ . Right: Null space response for variables 

N V
e and φ  for lamniscate trajectory 

s
Γ . All results are for  _ ( )cwls optq t  solution. 

Trajectory: 
s

Γ  

Trajectory: 
1

Γ  
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5. CONCLUSION 
By composite weighting the range and null space we can arrive at a solution which is able to 
handle both joint limits and preferred joint configuration, simultaneously satisfying the primary 

task. The solution lies between  t rq and q  also shifts the recovered joint space to wards   the 

reference configuration rq  without JLA. In this formulation the role of  2W  and rq  is of paramount 

importance as it controls the contribution form null space along with scalar Hk . It has been 

observed that null space velocities 
V

φ  and acceleration 
a

φ  are shooting up antagonistically to 
N

e  

which signifies that the null space controller is working and there is self motion contribution form 

null space when 
N

e  is facing a drift from asymptotic stability. This enables the CWLS framework 

to retrieve the desired joint configuration given the desired task space and preferred joint rate 

( )rq&  without considering any joint dependency.  

 
The response can be utilized for an event where some preferred poses are desired in joint space, 
keeping the task space error minimum, which can be exploited for recovering various human 
postures where the motion workspace is limited and there is practical difficulty in mounting optical 
markers or inertial motion sensors due to limited space availability or hindrance in natural 
articulation. A typical application in this regard is recovering human palmer grasps (full closure of 
fist) postures which are currently under study. The task is challenging, as in human palmer grasp 
motion, apart from it’s high dimensionality, the problem is much more aggravated by limited 
workspace space availability, cross finger occlusion, constraints in finger joint motion and full 
traversal of joint motion ranges. The state of the art motion tracking technologies using optical or 
inertial sensing for retrieving position and orientation data from each joint sometimes becomes 
infeasible for this particular grasp mode, due to space limitations and slip, which results in 
restricting natural articulation. 
 

The limitation with 1
1 2( )W W −+  term is with the activation of JLA, it reduces the null space 

contribution. Sensitivity of Hk  parameter is another issue and hence its bound has been kept in 

between 0.75-0.95 for most of the cases as it is additionally coupled with the term 1
1 2 2( )W W W−+ . 

The other important limitation observed in CWLS scheme is its dependency on initial 
configuration. Hence it will require an initial configuration close to the analytical solution. 
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APPENDIX- I.A CWLS derivation 

Objective : 1 2( ) ( )  ( )[(1 / 2) (1/ 2)( ) ( )];  .   T T
r rmin q q min q q W q q q W q q s t Jq x= + − − =& & & & & & & & & & &3H  

 

1 2( , ) n nW W ×∀ ∈�  and positive diagonal positive definite , 

 

1 2

2
1 2 1 2

: ( , ) ( ) ( ) [(1/ 2) (1 / 2)( ) ( )] ( ) 

( ) 0   0 ( ) 0

T T
r r

T
T

q r q

Lagrangian L q q Jq x q W q q q W q q Jq x

L
L W q W q q J and L Jq x with L W W

q
λ

λ λ λ

λ

= + − = + − − + −

∂
∇ = ⇒ + − + = ∇ = − = ∇ = + >

∂
& &

& & & & & & & & & & & &

& & & & &
&

H

 

1
1 2 1 2 2 1 2 2

1
1 2 2

1 1 1 1 1
1 2 1 2 2 1 2

( ) 0 ( ) ;  ( ) ( ) 

      0; ( ) ( ) ;

  ( ( ) ) [ ( ) ] ( ),  ( ) [

T T T
r r r

T
r

T T
r

W q W q q J W W q W q J q W W W q J

Putting the value of q in L J W W W q J x

J W W J J W W W q x and W W W JW J JW

λ

λ λ λ

λ

λ λ

−

−

− − − − −

⇒ + − + = ⇒ + = − ⇒ = + −

∇ = + − =

⇒ = + + − ∀ + =

& & & & & & &

& & &

& & �
1

2 ] rW q x
− −& &

 

 
1 1 1 1 1 1 1

2( ) ( ( ) )T T T T
rq W J JW J x I W J JW J J W W q− − − − − − −⇒ = + −& & &  

 
1 1 1 1

1 1 2 2 ( ) ; ( ) ;  T T
rJ W J JW J W W W qξ− − − −∀ ∀ +h
&� �       
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1
1 2 2 1( )( ) ( )  rq J x I J J W W W q J x I J J ξ−= + − + = + −h h h h

& & & &  

 

APPENDIX- I.B  Null space Lyapunov stability.  

Differentiating the null space error term 
N

e  in Eq.(11), 

1 1
( )( ) ( )( )h h h

N
e I J J q J J J J qξ ξ= − − − + −& & && && & ;  

rewriting  
1

( )qξ − &   and substituting in 
N

e& ,                 

 

1 1
( )( ) ( ) ( );h h h h h h h

N N N
e I J J q J Je J Je J JJ J JJ J qξ ξ= − − − − − + −& & & & && && &  0   ( ),

N N
Je as e J= ∈Q �  and  

 

,hJJ I= 0h hJJ JJ⇒ + =& & ; which after simplification 

 

1 1
( )( ) ( ) ( )h h h h

N N
e I J J q J Je I J J J J qξ ξ= − − − − − −& & && && &  

 

Now 
1 1

( ) ( ) ( )( )h h h

N N N
I J J J J q I J J K eξ ξ φ− − = − + −&& &  from Eq. (11) 

 

1 1
, ( )( ) ( ) ( )h h h h

N N N N N
or e I J J q J Je I J J I J J K eξ ξ φ= − − − − − − − +& &&& &&     

    
Substituting the value of  q&&  from  Eq.(6) 
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Defining a Lyapunov positive definite candidate function : 
 

(1/ 2) T T
N N N NV e e V e e= ⇒ =& &  and substituting the values of  Ne&   
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which  is  negative definite for positive definite symmetric null space proportional gain matrix NK , 

which implies that the proposed controller stabilizes null space motion as long as the Jacobian is 

full rank. 


