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Abstract

Designing a controller for nonlinear systems is difficult to be applied. Thus, it is usually based on
a linearization around their equilibrium points. The state dependent Riccati equation control
approach is an optimization method that has the simplicity of the classical linear quadratic control
method. On the other hand, the singular perturbation theory is used for the decomposition of a
high-order system into two lower-order systems. In this study, the finite-horizon optimization of a
class of nonlinear singularly perturbed systems based on the singular perturbation theory and the
state dependent Riccati equation technique together is addressed. In the proposed method, first,
the Hamiltonian equations are described as a state-dependent Hamiltonian matrix, from which,
the reduced-order subsystems are obtained. Then, these subsystems are converted into outer-
layer, initial layer correction and final layer correction equations, from which, the separated state
dependent Riccati equations are derived. The optimal control law is, then, obtained by computing
the Riccati matrices.

Keywords: Singularly Perturbed Systems, State-Dependent Riccati Equation, Nonlinear Optimal
Control, Finite-Horizon Optimization Problem, Single Link Flexible Joint Robot Manipulator.

1. INTRODUCTION

Designing regulator systems is an important class of optimal control problems in which optimal
control law leads to the Hamilton-Jacobi-Belman (HJB) equation. Various techniques have been
suggested to solve this equation. One of these techniques, which are used for optimizing in
infinite horizon, is based on the state-dependent Riccati equation (SDRE). In this technique,
unlike linearization methods, a description of the system as state-dependent coefficients (SDCs)
and in the form f(x)=A(x)x must be provided. In this representation, A(x) is not unique. Therefore,
the solutions of the SDRE would be dependent on the choice of matrix A(x). With suitable choice
of the matrix, the solution to the equation is optimal; otherwise, the equation has suboptimal
solutions. Bank and Mhana [1] proposed a suitable method for the selection of SDCs. Cimen [2]
provided the condition for the solvability and local asymptotic stability of the SDRE closed-loop
system for a class of nonlinear systems. Khaloozadeh and Abdolahi converted the nonlinear
regulation [3] and tracking [4] problems in the finite-horizon to a state-dependent quasi-Riccati
equation. They also provided an iterative method based on the Piccard theorem, which obtains a
solution at a low convergence rate but good precision. On the other hand, the system discussed
in this study is a class of nonlinear singularly perturbed systems. Naidu and Calise [5] dealt with
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the use of the singular perturbation theory and the two time scale (TTS) method in satellite and
interplanetary trajectories, missiles, launch vehicles and hypersonic flight, space robotics. For LTI
singularly perturbed systems, Su et al. [6] and Gaijic et al. [7] performed the exact slow-fast
decomposition of the linear quadratic (LQ) singularly perturbed optimal control problem in infinite
horizon by deriving separate Riccati equations. Also, Gajic et al. [8] did the same for the case of
finite horizon. Amjadifard et al. [9, 10] addressed the robust disturbance attenuation of a class of
nonlinear singularly perturbed systems and robust regulation of a class of nonlinear singularly
perturbed systems [11], and also position and velocity control of a flexible joint robot manipulator
via fuzzy controller based on singular perturbation analysis [12]. Fridman [13, 14] dealt with the
infinite horizon nonlinear quadratic optimal control problem for a class of non-standard nonlinear
singularly perturbed systems by invariant manifolds of the Hamiltonian system and its
decomposition into linear-algebraic Riccati equations.

In this study, we extend results of [13, 14] to the finite horizon by slow-fast manifolds of the
Hamiltonian system and its decomposition into SDREs. Our contribution is that, we used the
singular perturbation theory and SDRE method together. In the proposed method, first, the state-
dependent Hamiltonian matrix is derived for the system under study. Then, this matrix is
separated into the reduced-order slow and fast subsystems. Using the singular perturbation
theory, the state equations and SDREs are converted into outer layer, initial layer correction and
final layer correction equations, which are then solved to obtain the optimal control law. The block
diagram of the proposed method is shown in Figure 1.

Slow state
Slow equations
Hamiltonian
matrix \ Slow
SDREs
Description State Optimal
of the L » dependent control
system as Hamiltonian law
SDCs tri
matrix Fast state
equations
Fast
Hamiltonian
matrix N4 Fast
SDREs

FIGURE 1: The design procedure stages in the proposed method.

The remainder of this study is organized as follows. Section 2 explains the structure of the
singularly perturbed system for optimization. Section 3 involves in the description of steps of the
design procedure in the proposed method. Section 4 presents the simulation results of the
system used in the proposed method. Finally, the study culminates with indication of remarks in
section 5.

2. PROBLEM FORMULATION

The following nonlinear singularly perturbed system is assumed:

Ex=f(x)+ B(x)u,x(to) =Xg> @)
where x(z) = {xl }xi e R" ,i=1,2are the states of system, and x=0, is the equilibrium point of the
%)

system (n=n;+ny). This system is full state observable, autonomous, nonlinear in the states, and
fi(xlaxz):|’ﬁ c R"i,B(x) — |:Bl('x17x2)
J2(x1,%2) B (x1,x5)
are differentiable with respect to x;, x, for a sufficient number of times. Furthermore, f(0,)=0,,

affine in the input. Moreover, f(x):{ :|9Bi eR",i=12

International Journal of Robotics and Automation (IJRA), Volume (4) : Issue (1) : 2013 2



Seyed Mostafa Ghadami, Roya Amjadifard & Hamid Khaloozadeh

nypxXny O}’ll Xnp
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B(x)#0n.m, YxeR" and E ={ }hat £>0 is a small parameter. Provided these, it

is desired to obtain the optimal control law u(x)eR™ such that for k(x)eR", k(0,)=0, and
pointwise positive definite matrix R(x) esR"—»>R™", the following performance index J is minimized.

9= h(x(er))+ J:)F (kT(X)k(x)+ u” R(x)u)dt ()

Suppose that k(x), R(x) are differentiable with respect to x;, x, for a sufficient number of times.
Moreover, {r is chosen such that it is sufficiently large with respect to the dominant time constant
of the slow subsystem, and x(tg) is free.

3. THE PROPOSED METHOD

The singularly perturbed system (1) with performance index (2) is assumed. Defining the co-state
Ay (xp,x7)
A (x1,%7)

Ot ) = OKG) +a RO+ 4T (3 ) By (5,00 + 2T (o (0,3)+ Bas . (3)

vector A(x) :[ }ﬂi € R",i = 1,2,the Hamiltonian function is obtained as (3):

According to the optimal control theory, the necessary conditions for optimization would be as
follow [2]:

) oH (4a)
& = ()" = £ (0. x0) + By (. x)us x, (1),
ol
. OH (4b)
gty =(—)" = fo(x,x,) + B, (x;,x) ), Xy (L),
o4,
oY  (okx)Y o) (B 1 ;or o
oo o) _ (@) [[F@), r(B@) 1 R |
ox, ox, ox, ox, 2 ox,
1fanY
:ﬂ‘ t =71~ )
((x(tp) 2( axlj v
oY (k)Y o)) eBx) 1 ;oRr (4d)
o, (_] (L) Ke)- (&J [—”J IR ER
ox, 0Ox, 0Ox, 0x, 2 0x,
1(onY
,gﬂz(x(tp))=5(aj life»
oH
0= 8_u =R(x)u+ B1T(x1,xz)11 + Bzr(xlaxz)ﬂa- (4e)
3.1 Description of The System As SDCs (The first step)
A continuous nonlinear matrix-valued function A(x) always exists such that
f(x)=A(x)x (5)

Where A(x):R"—>R™ is found by mathematical factorization and is, clearly, non-unique when
o
0

X | x=ax

1
n>1. A suitable choice for matrix A(x) is A(X)=Io da,where « is a dummy variable that

was introduced in the integration [1]. Then, the relations (4) can be written as:
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= A(x)x+ B(x)u, x(y) (6a)
Oy (AW ([T r(aBm]T 1,7 R (%j 6b
Ei=~2) = ( °: jk(x) [( - J wul | S Sl 4, EAx())= = 1, (60)
u=-R"(x)B" (x)2 (6c)

Considering that B(x) and R(x) are nonzero, the optimal control law is proportional to vector A.

3.2 Description of The Hamiltonian Matrix As SDCs (The second step)
10k

Assuming that K(x)= o da is available from k(x)=K(x)x and that Q(x)=K'(x)K(x) and
X |x=cox
S(x)=B(x)R”"(x)B'(x), the relations (6) can be rewritten as follow:
x = A(x)x —S(x)A, x(ty) =x,, (7a)

EAl=-0(x)x— A" (x)1 - [i x{%)T k(x)
"3 ,(aAai")j 3 ) ) 2 e i(ﬂ 3 )[aBa"ix)ij, (7o)

i=1 i=l1

“2lax
Where,
I 24,;(x) 24,;(x)
o _| L G
x|y | (8a)
ox, ox,
oK (x) aKli(x)_
Ko | B
25 aKni(x) aKni(x) ’ (8b)
ox ox,,
I 0B,;(x) 0B,;(x)
By | . % .
Ox aBni(x) aBni(x) ’ ( C)
ox, ox,,
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R R
Ry | T % (8d)
o | oR,(x) AR, |

ox, ox,

Assumption 1: A(x), B(x), Q(x), R(x),

8,2(x)’63(x)’61<(x) and OR(x) are bounded in a
X

Ox Ox Ox

neighborhood of £ about the region. Then, the expression in the bracket will be ignored because
of being small. This approximation is asymptotically optimal, in that it converges to the optimal
control close to the origin as [2]. Thus, the relations (7) can be written as:

Ex _ Ax) —=Sx) || x ©)
EA| |-0(x) —4"(x)| 2

Remark 1: Suppose that Ty, Ts are dominant time constants of the slow subsystem for initial and

final layer correction, respectively. In other words, Tvi:max; and

|}”€Cll (elg slow(‘]i )]
1

|V eal(eig slo w(‘]F ))

T = max

where, J;and Jg are the Jacobian matrices of Hamiltonian system in

: . _| A —S(x) _| Ax)  —S(x)
initial and final layer correction and, J; = o) —4"(x) o Jp = _o() —A"(%) =
150, 20,

Note that (Ts+Ts)/2 is the average time constant of the Hamiltonian system and the setting time
is fourfold of one, then a proper selection for tis

tr> to+2(Ts+ Tse) (10)

3.3 The Singularly Perturbed SDRE in Finite Horizon
In the proposed method, co-sate vector A, can be described as 1=P(x)x using the sweep method

T
Bi(x,x) &Py (x,x,)
Py(x,xy)  Pyy(xp,xy)

positive-definite solution of the Riccati matrix equation. By differentiating 1 with respect to time,
we can write:

[3], where, P(x)= ,jeRn"X"" [7] is the unique, non-symmetric,

A= P(x)x+P(x)x (11)
By substituting (11) in (9) and with rearrangement of one, we have:
-1 T
EP(x)+PT(x)A<x>+AT<x>P(x)—PT<x>S<x>P<x>+Q<x>=0,,x,1,P(x<rF>)=E—fi[%j e da (12)
2 Joox\ ox

The relation (12) is called a SDRE for nonlinear singularly perturbed system in finite horizon. It
should be noted that the optimal control law is obtained by computing these Riccati matrices.

The solution conditions for SDRE are that {A(x),B(x)} be stabilizable and {A(x),(Q(x))"*} be
detectable for vxeR". A sufficient test for the stabilizability condition of {A(x),B(x)} is to check that
the controllability matrix M= [B(x),A(x)B(x),...,A”"(x)B(x)] has rank(M.)=n, ¥x <. Similarly, a
sufficient test for detectability of {A(x), (Q(x))"%} is that the observability matrix M,=[(Q(x))"*,
(Q(x)?A(x), ..., (Q(x))"*A™"(x)] has rank(M,)=n, vxe« [2]. Furthermore, the closed-loop matrix
A(x)-S(x)P(x) should be pointwise Hurwitz for vxe. Here, 2 is any region such that the

1
Lyapunov function 7 (x) :xTUaP(ax)daJx is locally Lipschitz around the origin [2]. The SDRE in
0
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(12) consist (m +ny)(my +n, +1)

differential equations that number of these equations is reduced

by using singular perturbation theory.
3.4 The Separated Hamiltonian Matrices

X
In the proposed method, by separating the slow and fast variables as X ={ : }
ﬂl(xlaxz)

X
Xp= 2 , we can describe the optimization relations (9) in the form of the following
' ﬂz(xbxz)

singularly perturbed state-dependent Hamiltonian matrix:

X :|:H11(x1’x2) le(xbxz)} X (13)
ng Hy(x1,x5)  Hyp(x,x;) Xf ’
_Qij(xlax2) _(Aji(xl’XZ))T

eigenvalues of the system (13) are pointwise small and the remaining 2n, eigenvalues are
pointwise large, corresponding to the slow and fast responses, respectively. The state and co-

state equations (13) constitute a singularly perturbed, two point boundary value problem
(TPBVP). Hence, the asymptotic solution is obtained as an outer solution in terms of the original

Where, H[j(xlax2):|: } and /, j=1,2. Thus, we assume that the 2n,

t—t
independent variable t, initial layer correction in terms of an initial stretched variable 7 = 0

&

t. —t
and final layer correction in terms of a final stretched variable o =-% [5]. Thus, the
&

composite solutions can be written as follow:
x(t,8)=x,(t,&)+x,(7,&) + X (0,€)
X3 (1,8) = X3, (1,6) + X9 (7,6) + X1 (0, &) (14)
B (t,6) =B, (t,6) + P (7,6) + Bp(0,€)
Pp(t,e) =Py (t,6)+ P(7,6) + Py (0, €)

Ir =1l Irp =1l

where 7, <t <t;,0<7<f <

0ot <

. The first terms on the right hand sides of

the above relations represent the outer solution. The second and third terms represent boundary-
layer corrections to the slow manifold near the initial and final times, respectively. Indices o, i and
F correspond to the outer layer, initial, and final correction layers. For any boundary condition on
the slow manifold, states and co-states are given by outer solution. For any boundary condition
out of the slow manifold, the trajectory rapidly approaches the slow manifold according to the fast
manifolds.

We now perform the slow-fast decomposition of the singularly perturbed state-dependent
Hamiltonian matrix, in which H,,(x1,x,) must be non-singular for all x;, x, (in what follows,
dependence upon x;, X» is not represented, for convenience):

H H -1
Hll 12 L, x2m, eH\,H 5, %
21 22 |7 7
e e T Y2nyx2n, 2nyx2n,y

1 (15)
Hyy—HyHyy Hyy 03,620, l: Ly, x2m, 02n1x2n2}
X

H -1
22 H H
22 21 ]2n2 x2ny

02n2 x2n; e
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Stated differently:

. -1
{12”1%"1 —ngszzl}{Xs} Hy\\—H\,H,, H,, 02n1x2n2

. = H
22
02n2 x2m Ian x2ny Xf 02n2 x2m;

& (16)
< 12n1><2n1 02n1><2n2 Xs
-1
Hyy Hy, 12n2><2n2 Xf
. xS
New co-sate vector can be described as A,ew=Prew(Xnew)Xnew» Where X, = . P
f

A (x X )
i — S s f , n ny P —
new |:lf xs,xf) /15 eR ’ﬂ’f € R, and new(xnew)

new slow-fast variables are defined as follow:

P2 =L (:‘*’xf)}Xs, (17a)

P(x,,xf) 6P(x,xf)
glib(;s’xf P: x:,xf) . Then, the

Xr -1
= =H,, HyX,+X,, 17b
Xy [if(xijf)} 22 Hy X+ Xy (17b)

Thus, (13) is converted to a new form:

: -1y -1
X —el )5, X_/‘ :(Hn—lesz H21)Zs (18)
ng :H22Zf

Finally, the optimization equations in a singular perturbation model framework with the new
variables are obtained as:

. .

ZS:(HII_lesz Hz[))(s"'leZf (19)
. - -1 -1 -1 : -

& =€ty Hy\H\ —HyH,, Hy Jx, +“"(_sz HyHyy, Hy +Hy, H21)1s+(H22+5H22 HZ]H]Z)Zf

Moreover, the separated state-dependent Hamiltonian matrices Hg(xs,x;) and  Hax(x1,x5) are
described in the form of the following:

H (xs7xf): H, 1(x1,x2)—H12(x1,x2 )H22_] (xl,x2 )H21(x1=x2)+ [0(5)]2n1x2nl
B As (xl’x2)n1><n1 - Ss (xl’x2)n1><n1
- Qs (x ’x2)n1><n1 B (As (x ’x2))T”IX”I

A22(x1’x2)nz><nz - S22(x1’x2)n2><n2

T
- Q22(x1’x2)n2><n2 - (Azz(xpxz)) Xy

(20a)
] + [O(g)]ZnIXZMI ’

Hy (xs Xy ) = Hoolx1, )+ [O(g)]2n2><2112 = { :l + [0(‘9)]2,12x2n2 . (20b)
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3.5 The slow-fast SDREs (The third step)

In the proposed method, using the singular perturbation theory, the subsystems (19) are
converted into outer-layer and boundary-layer correction subsystems. The separated SDRE
relations are, then derived and solved for obtaining the optimal control law.

Theorem 1: The singularly perturbed system (1) with performance index (2) is assumed. The
slow- fast state equations in the initial layer correction are obtained as follow:

* *
o= As(xlo’x 20 +x2i)_Ss(x105x 20 +x2i)1)so 10>%10 |t0=xl(t0)s (21a)

dxzi * % * *
_d ={Ayy (X1, 20 +29;) =899 (X, X 20 + 29 )P 220 X 20 +xy; |+
T

(21b)
(AZI(xlwx 20 +X9;) =831 (X195 X 20 +X9) Py =8 (X1, X 20 +x)P 210)X10>x2i Iy =X2(fg) =X 20 (1),
Also, the slow- fast SDREs in the final layer correction are obtained as follow:

P + PsoAso(xlo ’x*20) + AsoT (xlo’X*ZU) IpsoSso(xlosxakz")P’so + (223)

Qso(xltvx 2”) = Onlxnl ’Rvo |tF = E l(tF)a
deF ( 5 ) ( T * )P *
> = Py\drzo = S22 220 |+ \Aopy — P 220850, P = PrpSoao Ly s P |y, = Pro(tp) = P 220 (tpp)

where. {Pn(x(tF» esz(x(tF))}: £ J‘la[ah
Py (x(tr))  Pyo(x(tr)) 2 Joox\ ox
law is as follows:

w=-R"(0,,x 20 + 1y )(BlT(xlo,x*zo +Xy )P X, + BZT(xlo X2+ xQ,-)(chlo + (P*220 + Py Xx*zo + xZi))))

(22b)

j ly—ex da . Furthermore, the optimal control
(23)

where, P, and Py are the unique, symmetric, positive-definite solutions of (22), and

* — * * I
P = [P 2+ Pp =1, ., ][—122 1(xlo,)c 20 + X, ) H 5 1(X155 X 20 +x2[){ ';‘;"1} . The solution necessary

N
conditions of relations (21) and (22) are as follow: .
[ {ASO(X1O,X 20), BSO(X1O,X 20)} and {AQQO(X1O,X 20), BQO(X1O,X 20)} should be stabilizable for

v xlo,x*zo)e R™ xR",

o {Aso(X10X 20),(QsolX10X 20)) "} @A {Az20(X10,X 20), (Qzzo(X10:X 20))"}  should be detectable for
V(xlo,x*za)e R™ xR",

e The outer equations (24) should have solutions (the slow manifolds) as xigo(xw,Pm),
P21O(X107P11o) and P220(X10:P11o)

(4210 = S210B 10 = S220Pa10 Wto +(Ar2y =220 Proy Wy =0, (242)

T T 24b
(A220 _P220S220)P210 +(A120 _P220S2lu)Pllo + Py A1y + a1 =0,y » (240)

T 24c
Py Aoy + Arzy Proy = Pr208220 P00 + a2y = Onzxnz > (24¢c)
It should be noted that in the above relations, all the elements of the state and Riccati matrices
are dependent on state variables, and have not been represented for simplicity.[’

Proofs of the theorems are given in appendix.

Remark 2: SDREs in (22) have nsn, the less differential equations respect to (12).
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4. EXAMPLE

Consider a single link flexible joint robot manipulator as it has been introduced in [11]. This link is
directly actuated by a D.C. electrical motor whose rotor is elastically coupled to the link. In this
example, the mathematical model of system is as follows:

1g, + mglsin(q,)+k(q; —q,)=0

1g, + Bq, —k(q —q,) =u
%) 0 \")

Motor

(25)

link

FIGURE 2: Single link flexible joint robot manipulator

In Table 1 there is a complete list of notations of the mathematical model of a single link flexible
joint robot manipulator.

Notation Description
Q1 angular positions of the link
Q2 angular positions of the motor

actuator force (motor torque)
the arm inertia
the motor inertia
the motor viscous friction
the nominal load in the rotor link
the stiffness coefficient of flexible joint

xémg—c

TABLE 1: Notations the mathematical model of a single link flexible joint robot manipulator.

Moreover, parameter values are given in Table 2.

parameter Value of parameter
[ 0.031(Kg.m?)
J 0.004(Kg.m?)
B 0.007
k 7.13
mgl 0.8 (N.m)

TABLE 2: Parameter values of the single link flexible joint robot manipulator.

11 q,
Defining X; =| Xj5 | = ?2 Xy =G, X = L):j and &=J, state equations are as follow:
13 q,
X1 X3 0 10°
).Clz =| mgl . & k k + 0 U, Xy = 30(/) (26)
X3 —751n(x11)—7x11+7x12 0 0""*
& kocy | —kexy 5 — iy 1 0"
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It is desired to obtain the optimal control law such that the following performance index J is
minimized.

(27)
J ZI(XHZ+x]22+x132+x22+u2>l't
0
X13 0 Xpq
X2 0 X
In this  example, f(x)=| mgl _ ko k_ pBE=| Lkx=|""|R(x)=1and
__Sln(xll)_7x11+7x12 0 X13
feey —hovy 5 = ! 2

h(x(tg))=0. Moreover, f(x), k(x) are differentiable with respect to x for a sufficient number of times
and x=0, is the equilibrium point of the system. Furthermore, £,=0, t-=5, P(x(tr))=04.4.

Step 1 (Description of the system as SDCs):
To solve the optimization problem, the nonlinear functions f(x), k(x) must first be represented as
SDCs. A suitable choice, considering [1], is as follows:

0 0O 1 o0
0 0 0 1
A(x) = j da=| mglsin(x,) k &k
-—=—-— - 0 0
k -k 0 -p
1 000
0100
K J’ - 28b
)= OX |x=ax 0 010 (28b)
0 0 0 1
Step 2 (Description of the Hamiltonian matrix as SDCs):
The separated Hamiltonian matrices can be derived:
i ok 0 ' 1 0 0 i
1
f - 2ﬂ 0 0 -—
p°+1 £ +1 g +1
B mgl;ln(x] D _é é 0 0 0 0
X1
H(x,x,) = Lk K o o _ Pk mglsinty) k (292)
pr+1 pr+1 B +1 Ixyy 1
2 2
d -y 0 A& i
A+l B+l B+l I
i 0 0 -1 -1 0 0 |
H _|A
(LX) = 5 (29b)
Step 3.1 (the outer equations):
The relations (24) have solutions as:
X9 = Br (X110 =X125) = Pio12%110 = Foo22%120 = Bio23%13
o B2 +1 (30a)
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* P
P = _k+M (30b)

P =+ +1-p (30c)

0 0 1 0
Moreover, {Am(xlo,x*lo) = Bk Bk 0 !

1

(0t =

B+l B +1 By (195X 20) = B+l
+

_ mgl Sin(xl 10) _ﬁ ﬁ 0 0
bcllo I I

_l+\/ﬂ2+1+2k2 1 A +1+283
20 afprar 20 2pr+ .
1 VB r1e2k l+\/ﬂ2+1+2k2 o, is stabilizable and detectable. g0 (X105 X 20) ==,

0

2 2lprv1 20 2Yprt
0 0

1

1
By, (X155 X 20) =1, (sz(, (xlo,x*Zo))E =1} is also stabilizable and detectable.

Step 3.2 (the state equations):
According to (21), state variables relations in the initial layer correction are as follow:

X130 10°
. kxo_xo_Psoxo_Psoxo_Psoxo
iy, = Bh(xy, 120) 12 ;1 5022%12 s025%30 | (1) =] 3° (31a)
B +1 00/s
—m—glsin(x )—Ex +Ex
i Ja 11o Ja 1lo 7 120 ]
31b)
ey, rom 7k =10P,15(tg) = 3Pyyo(to) (
_2=_x2i ﬂ2+1,x2i(t0)= 1220 2240
dr L +1

Step 3.3 (the slow-fast SDREs):
The slow- fast SDREs in (22) have 3 the less equations respect to the original SDRE.
Considering (22), the SDRE relations in the final layer correction are as follow:

PSJIO 1337120 11“7130

P, = (PV_IZO)T Pv_zzo Ps_230 P (tp) =035
(Ps_lso)T (Ps_no)r Ps_330
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i 2mglF, ,138in(x; ), ) 1+ 2Pk 2PkPpy + k= P12 ] (32a)
i I pr+1
p T mglP;,p3sin(x, ) y Py =Pt + fk P = Fn n PooiaPionn + K
310 by, [ f 1 f+1
I?UZO mglF, 33 sin(x; , ) n Poo1aFiors = PP _P 4k Poss
Px7130 _ le 1o ﬂ2+1 sotl 1
[',57220 ok Pons 1+ 2 kP, —2k2 + P2
E o3 I B+l
P 5 PionaPions + PPy P,k B33
) ) A2 +1 ¥ I
2
@_1_2P§013
| p°+1 |
APy (2 1. p 2 (. (32b)
d& =2Pp\p +1+ Py ", Prp(tp)=—p"+1+ 5
Step 3.4 (the optimal control law):
Moreover, the optimal control law is as follow:
(33)

k p [
u= m(xl o _X120)+m(1)s012x1 o T PionaXioo T Pipstiz) = (P +4 7 +1=B)xy
The state equations and SDREs are two-point boundary value problem (TPBVP) and dependent
on state variables, but we have no state values in the whole interval [0,5]. To overcome this
problem we solve the above equations by an iterative procedure [3, 4]. Now, running the
simulation programs, Figures 3, 4 show the angular positions and velocities.

The angular positions(deg) and first angular velocity(deg/s) The angular positions(deg) and first angular velocity(deg/s)
T T

20
----- a, 10 i —| ——---
A 4 —
10 —q, 0.———"" —,
0 dg; da,
Vo
-10
-10
20 -20
-30 -30
-40 40
-50
-50
50 w \
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5 0 0.01 0.02 0.03 004 005 006 007 0.08 0.09 0.1
Time(sec)

Time(sec)

FIGURE 3: The slow state variables (The angular positions of g+, g2 and angular velocity of g, ).
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Second angular velocity(deg/s)

Second angular velocity(deg/s)

90 ——foC
100 ST ‘ _____ 4 ‘
______ dqz 'l Sm—— 2
80 i B,
80 [ e
H T
70— <]
1
60
601
1
i
40 501
!
40+
20 i
1
30
R i
OH—" o —ees= - =mas |
\ ) 20
[
1)
-20 10
¥
v
-40 0
0o 05 1 15 2 25 3 35 4 45 5 0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
Time(sec) Time(sec)

FIGURE 4: The fast state variable (angular velocity of g, ).

Also, Figures 5 and 6 show the Riccati gains.

The Riccati gains of PS

20
Y
\
15 =TS
N 1
R
]
10 H
1
1
\
5 \
\
\
s
1
i
1
5 i
1
1
10 /
- ]
)
J
-15 4
-20
0.5 1 1.5 2 25 3 3.5 4 4.5 5
Time(sec)

FIGURE 5: The Riccati gains of Ps,

The Riccati gains of P, The Riccati gains of P

f

0.35
\
\
0.3 0.25 \
\
\
\
0.25 \
- 0.2 \
\
\
\
0.2 5
0.15 v
\
\
0.15 \
\
\\
0.1 \
0.1 N
\,
\\
0.05 0.05 .
s,
<.
~\~~~
0 Trea
0 0.5 1 1.5 2 25 3 3.5 4 45 5 4.985 4.99 4.995 5
Time(sec) Time(sec)

FIGURE 6: The Riccati gains of Pr

From Figures 3 and 5, it can be seen that for any initial and final conditions on the slow
manifold, for different values of ¢, states are given by outer solution. On the other hand,
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Figures 4 and 6 show that for any initial and final conditions out of the slow manifold, the

trajectories rapidly approach the slow manifold according to the fast manifolds. Moreover,
Figure 7 shows the optimal control law.

The optimal control law

0.8

0.6

0.4

0.2

-

-0.2
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Time(sec)

FIGURE 7: The optimal control law u.

5. CONCLUSION

With the proposed method in this study, it is seen that the finite-horizon optimization problem of a
class of nonlinear singularly perturbed systems leads to SDREs for slow and fast state variables.
One of the advantages of SDRE method is that knowledge of the Jacobian of the nonlinearity in
the states, similar to HJB equation, is not necessary. Thus, the proposed method has not only
simplicity of the LQ method but also higher flexibility, due to adjustable changes in the Riccati
gains. On the other hand, one of the advantages of the singular perturbation theory is that it
reduces high-order systems into two lower-order subsystems due to the interaction between slow
and fast variables. Note that SDREs in the proposed method have n;n, the less differential
equations respect to the original SDRE. Thus, the slow-fast SDREs have the simpler computing
than original SDRE and provide good approximations of one.
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Appendix A: The relation between the P(x) and Pew(Xnew)

In order to compute the optimal control law, the relations between the Riccati matrices

P | Bilx) B x| [Bbox) el
(x)= and o, (%) =| 5 ( »
le(‘xlrxz) P22('x]7x2) &l b xs’xf f xsaxf

(ll l)nzxn] (112)n2><n1
(1 21 )’12><”l (122 )n2 xny
Xy :(111 +112P11)x1 +(I+5112P21T)X2a

|
ps =h ‘5(1+5112P21T) Pz]T(lll +112P11)+[0(82)]n]><nl’ (A1)
@, = &(Polyy —122)_1P21T(111 +1pP)+ 0(e?)

ﬂmust be determined.

Suppose that H22_1H21 ={ } according to (17), we have:

n xny 2
rfl,r

5Pb=5(]+5112P21 ) by,
T Y1

Py =(P22+5122P21 [+é,Py, ) )

Then, for s=0, one can write:

1 1
nypxn| x, = nyxny X A2
{Ps(xs,xf)} |:Pll(x1’x2)j| ! (A2a)
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Inzxnz -1 |: Ly j| |: On xn :| |: Ly in :|
x.=H,, H e + 22y + 27" Clx
{Pf(xs’xf) 4 2 Pll(xlaxz) 1 le(xlaxz) l Pzz(xlaxz) ?

Now, multiplying (A2b) by l— Pf (xsaxf) [n2 115 J the following relation is obtained.

(xl > X

U— Py (xs’xf) Ly in, ]sz_lHuL)lanl J + le(xl»xz )Jxl + (‘ Pf(xs’xf )+ Pzz(xlaxz ))Xz =0,,

In other words, we have:
x =x, +[0()],

B (x1.%) = P (x,,x ) +[0(8)], o
Pyy(x1,%,) = Pr(x,,x,) +[0(@)],, )

Py (x.%,) = Plx,.x, )+ [0(2)],, .0,

Where, pc(xs’xf)= [Pf (xs’xf) Iy, ]H22_1H21|:Plf86:1;2 )} Also, for ¢=0, we have:

X0 = Xs0
})1 10(x109x20) = ao(xso’xfo)
Pryo (X195 %2) = Py (Xg0, X 1)

Py (X19,X5,) = F, (xsg X fo )

Appendix B: Proof of Theorem 1

a) The optimal control law

(A2b)

(Ada)
(A4Db)
(Adc)

(Add)

(A5a)
(A5b)
(A5c)

(A5d)

According to A=P(x)x [3] and (A4), substituting Riccati matrices in (6c), the optimal control law

would result as in (23).

b) The slow manifolds in boundary-layer correction

According to the singular perturbation theory, for =0, the fast variable should be derived with
respect to the slow variable. Substituting =0 in (19), the outer-layer equations are obtained as

follows:
Xso = Hs |5:OZso + Hl%Zﬁ)’

02n2 =Hy X fo-

Substituting (17b) in (B1b), the following relation is derived:
Hy o Xgo + Hypo Xy, =05,

In other words, considering (14), we have:
(A2 lo ™ S2 101)1 lo ™ S22o])210 )xlo + (A220 B S220P220 )x20 = Onz >

T T
(Azzo —P55,852 )P21o +(A120 _P220S210)P110 + Py Ario + a1 =050, 5
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T B3c
PrroAroe + Aroe” Proo = Pr2pS220Pa20 T @22p =0 (B3c)

nyxnyp >

For which, X 2o(X10,P110), P 210(X10,P110) @nd P p0(X10,P110) @re the solutions. The necessary
conditions for (B3) to be solvable, {Ax0(X10,X 20), Bao(X10:X 20), (Qggo(x1o,x20))1/2} should be

pointwise stabilizable and detectable for V Xlo,x*ZO e R xR" [2].
In (B1a), H, ., forinside and out of the fast manifold, is separated as follows:
-1
Hy oo = H, 1(x1ax2) —H12(x1»x2)H22 (xlaxz)H21(x1»xz)|g=o =
{ Ay (x155%2) =8, (x15,%3)
- QS (xlo 7x2) - (Av (xlo X7 ))
I: Aso(xlo’x*z(’) _Sso(xlo’x*zo)
- Qso (xlo >x*20) - (Aso (xlo 9x*20 ))r

Substituting (B4) in (B1a), we have:
1o = (A (X1955) = S, (315,27 )Py (X105 X) X1 o =X1t0), foSt<ty+en, (B5a)

} ty <t<t,+e,, (B4a)

}, to+ét <t<tp. (B4b)

. * * *
X1 ‘|: Aso(xlo’x 2")xlo _Sso(xlo’x 20)Pso(xlo’x 20)X10
o¥lo

. . * * * 9P.v |f :Pll(tF)v tO +gtl StStF' (BSb)
|:PSOX10 +P9 _Qso(xlmx 20)x10 _AsoT(xlmx 20)Pso(x1mx 20)x10‘| o

Thus, assuming that {Aso(xm,x*z(,), BSO(X10,X*20), (Qso(xw,x*z(,))’/z} is pointwise stabilizable-
detectable for ‘v’xlo,x*zo e R™ x R"™ [2], with rearrangement of (B5b), the SDRE of the slow

variable is obtained as (22a).

Remark 3: Note that under assumption of above, Py, is unique, symmetric, positive definite
solution of the SDRE (22a) that produces a locally asymptotically stable closed loop solution [2].
Thus the closed-loop matrix Ag(X10,X2)-Ss(X10,X2)Pso is pointwise Hurwitz for V(xq0,X5) €€2;x€2,.
Here, ©2,x(, is any region such that the Lyapunov function is locally Lipschitz around the origin.

c) The fast manifold in initial layer correction

Since the time scale will be changed as 7 = i) in the initial layer correction, the time derivative
in this scale will be changed as % = g% in forward time. Considering (4b), we have:

T
dv, (B6)

e Agy (X105 %)%y + Ay (%19, X3 )Xy, + By (X105 X0 )ty Xy |y = X5 (1)

Substituting (23) in (B6), according to (A4) and (14), the fast state equation in initial layer is
obtained as (21b).

d)  The fast manifold in final layer correction

Since the time scale will be changed as o = i in the final layer correction, the time derivative
&
in this scale will be changed as a0 = _5& in backward time:
do dt
Yo - el ~H oy, HyJy, - et
do = e\t —Hpltlyy Hyy ¥ — e f (B7)
dy, - ( - ) ( Sy - iy ) ( - )
o =—¢tyy Hy\H\\—HHy Hylyg—e\-Hyy HypHyy Hyy+Hyy Hy g —\Hyy+etyy HyHply,
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Substituting £=0 in (B7), we have y,(c)= 0,,, - Therefore, the final layer correction equation is

obtained as:
I =—Hy(x10,X 2) 155 Xy |o:0=Zf(x1(tF)a x(tp)) (B8)

Now, substituting (20b) and (17b) in (B8), we have:

dx;
do Ay (X1, X 20)% 7 = S5y, 20)P
p deP —_ 22( lo *0) f 22(Tlo i’) I ’P/‘ ‘tF:P22(tF)’ tp -y <t<tp. (B9)
P iJr_fx =05 (0195 20)x 7 = Ayy (419, 20)Ppxs |
"do " do

Thus, assuming that  {Azz0(X10,X 20), B2o(X10:X 20)s (Qa20(X10,X 2)) "%} is stabilizable-detectable for
‘v’(xlo,x*zo)e R™ x R™ [2], according to (A5) and (14), the SDRE of the fast variable is obtained as

(22b).

Remark 4: Note that under assumption of above, Ps is unique, symmetric, positive definite
solution of the SDRE (22b) that produces a locally asymptotically stable closed loop solution [2].
Thus, the Closed—loop matrix A22(X1O,X2)—822(X1O,XQ)P*QQO is pOintWise Hurwitz for V(X10,X2) €2 x(.
Here, 2;x(; is any region such that the Lyapunov function is locally Lipschitz around the origin. [
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