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Abstract 

 
Designing a controller for nonlinear systems is difficult to be applied. Thus, it is usually based on 
a linearization around their equilibrium points. The state dependent Riccati equation control 
approach is an optimization method that has the simplicity of the classical linear quadratic control 
method. On the other hand, the singular perturbation theory is used for the decomposition of a 
high-order system into two lower-order systems. In this study, the finite-horizon optimization of a 
class of nonlinear singularly perturbed systems based on the singular perturbation theory and the 
state dependent Riccati equation technique together is addressed. In the proposed method, first, 
the Hamiltonian equations are described as a state-dependent Hamiltonian matrix, from which, 
the reduced-order subsystems are obtained. Then, these subsystems are converted into outer-
layer, initial layer correction and final layer correction equations, from which, the separated state 
dependent Riccati equations are derived. The optimal control law is, then, obtained by computing 
the Riccati matrices. 
 
Keywords: Singularly Perturbed Systems, State-Dependent Riccati Equation, Nonlinear Optimal 
Control, Finite-Horizon Optimization Problem, Single Link Flexible Joint Robot Manipulator. 

 
 
1. INTRODUCTION 

Designing regulator systems is an important class of optimal control problems in which optimal 
control law leads to the Hamilton-Jacobi-Belman (HJB) equation. Various techniques have been 
suggested to solve this equation. One of these techniques, which are used for optimizing in 
infinite horizon, is based on the state-dependent Riccati equation (SDRE). In this technique, 
unlike linearization methods, a description of the system as state-dependent coefficients (SDCs) 
and in the form f(x)=A(x)x must be provided. In this representation, A(x) is not unique. Therefore, 
the solutions of the SDRE would be dependent on the choice of matrix A(x). With suitable choice 
of the matrix, the solution to the equation is optimal; otherwise, the equation has suboptimal 
solutions. Bank and Mhana [1] proposed a suitable method for the selection of SDCs. Çimen [2] 
provided the condition for the solvability and local asymptotic stability of the SDRE closed-loop 
system for a class of nonlinear systems. Khaloozadeh and Abdolahi converted the nonlinear 
regulation [3] and tracking [4] problems in the finite-horizon to a state-dependent quasi-Riccati 
equation. They also provided an iterative method based on the Piccard theorem, which obtains a 
solution at a low convergence rate but good precision.  On the other hand, the system discussed 
in this study is a class of nonlinear singularly perturbed systems. Naidu and Calise [5] dealt with 
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the use of the singular perturbation theory and the two time scale (TTS) method in satellite and 
interplanetary trajectories, missiles, launch vehicles and hypersonic flight, space robotics. For LTI 
singularly perturbed systems, Su et al. [6] and Gajic et al. [7] performed the exact slow-fast 
decomposition of the linear quadratic (LQ) singularly perturbed optimal control problem in infinite 
horizon by deriving separate Riccati equations. Also, Gajic et al. [8] did the same for the case of 
finite horizon. Amjadifard et al. [9, 10] addressed the robust disturbance attenuation of a class of 
nonlinear singularly perturbed systems and robust regulation of a class of nonlinear singularly 
perturbed systems [11], and also position and velocity control of a flexible joint robot manipulator 
via fuzzy controller based on singular perturbation analysis [12]. Fridman [13, 14] dealt with the 
infinite horizon nonlinear quadratic optimal control problem for a class of non-standard nonlinear 
singularly perturbed systems by invariant manifolds of the Hamiltonian system and its 
decomposition into linear-algebraic Riccati equations.  
 
In this study, we extend results of [13, 14] to the finite horizon by slow-fast manifolds of the 
Hamiltonian system and its decomposition into SDREs. Our contribution is that, we used the 
singular perturbation theory and SDRE method together. In the proposed method, first, the state-
dependent Hamiltonian matrix is derived for the system under study. Then, this matrix is 
separated into the reduced-order slow and fast subsystems. Using the singular perturbation 
theory, the state equations and SDREs are converted into outer layer, initial layer correction and 
final layer correction equations, which are then solved to obtain the optimal control law. The block 
diagram of the proposed method is shown in Figure 1. 
 

 
 
 
 
 
 
 
 
 
 
 
 

FIGURE 1: The design procedure stages in the proposed method. 

 

The remainder of this study is organized as follows. Section 2 explains the structure of the 
singularly perturbed system for optimization. Section 3 involves in the description of steps of the 
design procedure in the proposed method. Section 4 presents the simulation results of the 
system used in the proposed method. Finally, the study culminates with indication of remarks in 
section 5. 

 
2. PROBLEM FORMULATION 

The following nonlinear singularly perturbed system is assumed: 
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Suppose that k(x), R(x) are differentiable with respect to x1, x2 for a sufficient number of times. 
Moreover, tF is chosen such that it is sufficiently large with respect to the dominant time constant 
of the slow subsystem, and x(tF) is free. 

 
3. THE PROPOSED METHOD 
The singularly perturbed system (1) with performance index (2) is assumed. Defining the co-state 
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According to the optimal control theory, the necessary conditions for optimization would be as 
follow [2]: 
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3.1 Description of The System As SDCs  (The first step) 
A continuous nonlinear matrix-valued function A(x) always exists such that 
f(x)=A(x)x (5) 

Where A(x):R
n
R
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  is found by mathematical factorization and is, clearly, non-unique when 
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was introduced in the integration [1]. Then, the relations (4) can be written as: 
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Considering that B(x) and R(x) are nonzero, the optimal control law is proportional to vector .  
 
3.2 Description of The Hamiltonian Matrix As SDCs  (The second step) 
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Note that (Tsi+TsF)/2 is the average time constant of the Hamiltonian system and the setting time 
is fourfold of one, then a proper selection for tF is  

tF > t0+2(Tsi+TsF) (10) 
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The relation (12) is called a SDRE for nonlinear singularly perturbed system in finite horizon. It 
should be noted that the optimal control law is obtained by computing these Riccati matrices.  
The solution conditions for SDRE are that {A(x),B(x)} be stabilizable and  {A(x),(Q(x))
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and I, j=1,2. Thus, we assume that the 2n1 

eigenvalues of the system (13) are pointwise small and the remaining 2n2 eigenvalues are 
pointwise large, corresponding to the slow and fast responses, respectively. The state and co-
state equations (13) constitute a singularly perturbed, two point boundary value problem 
(TPBVP). Hence, the asymptotic solution is obtained as an outer solution in terms of the original 

independent variable t, initial layer correction in terms of an initial stretched variable 


 0tt 
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and final layer correction in terms of a final stretched variable 
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ttF   [5]. Thus, the 

composite solutions can be written as follow:  
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where 
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the above relations represent the outer solution. The second and third terms represent boundary-
layer corrections to the slow manifold near the initial and final times, respectively. Indices o, i and 
F correspond to the outer layer, initial, and final correction layers. For any boundary condition on 
the slow manifold, states and co-states are given by outer solution. For any boundary condition 
out of the slow manifold, the trajectory rapidly approaches the slow manifold according to the fast 
manifolds.  
We now perform the slow-fast decomposition of the singularly perturbed state-dependent 
Hamiltonian matrix, in which H22(x1,x2) must be non-singular for all x1, x2 (in what follows, 
dependence upon x1, x2 is not represented, for convenience): 
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Stated differently: 
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New co-sate vector can be described as new=Pnew(xnew)xnew, where ,
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Thus, (13) is converted to a new form: 
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Finally, the optimization equations in a singular perturbation model framework with the new 
variables are obtained as: 
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Moreover, the separated state-dependent Hamiltonian matrices Hs(xs,xf) and  H22(x1,x2) are 
described in the form of the following:  
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3.5 The slow-fast SDREs (The third step) 
In the proposed method, using the singular perturbation theory, the subsystems (19) are 
converted into outer-layer and boundary-layer correction subsystems. The separated SDRE 
relations are, then derived and solved for obtaining the optimal control law. 
 
Theorem 1: The singularly perturbed system (1) with performance index (2) is assumed.  The 
slow- fast state equations in the initial layer correction are obtained as follow: 
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Also, the slow- fast SDREs in the final layer correction are obtained as follow: 
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where,  































 1

0

1

2221

2111 |
2))(())((

))(())((



 d

x

h

x

E

txPtxP

txPtxP
xx

T

FF

F
T

F . Furthermore, the optimal control 

law is as follows: 

    ,)),(),(),( 22
*

22
*

122
*

12122
*

1122
*

1
1

iofFoocioo
T

osoioo
T

ioo xxPPxPxxxBxPxxxBxxxRu  
 

(23) 

 
where, Pso and PfF are the unique, symmetric, positive-definite solutions of (22), and 
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 The outer equations (24) should have solutions (the slow manifolds) as x
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It should be noted that in the above relations, all the elements of the state and Riccati matrices 

are dependent on state variables, and have not been represented for simplicity. 
Proofs of the theorems are given in appendix. 
Remark 2: SDREs in (22) have n1n2 the less differential equations respect to (12). 
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4. EXAMPLE 

Consider a single link flexible joint robot manipulator as it has been introduced in [11]. This link is 
directly actuated by a D.C. electrical motor whose rotor is elastically coupled to the link. In this 
example, the mathematical model of system is as follows: 

uqqkqqI

qqkqmglqI





)(

0)()sin(
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2111
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(25) 

 

FIGURE 2: Single link flexible joint robot manipulator 

 

In Table 1 there is a complete list of notations of the mathematical model of a single link flexible 
joint robot manipulator.   
 
 
 

 

 

 

 
 
 
 

TABLE 1: Notations the mathematical model of a single link flexible joint robot manipulator. 

 

Moreover, parameter values are given in Table 2. 
 

 

 

 

 
 

TABLE 2: Parameter values of the single link flexible joint robot manipulator. 
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(26) 

Notation Description 
q1 angular positions of the link 

q2 angular positions of the motor 

u actuator force (motor torque) 

I the arm inertia 

J the motor inertia 

 the motor viscous friction 

mgl the nominal load in the rotor link 

K the stiffness coefficient of flexible joint 

 

parameter Value of parameter 
I 0.031(Kg.m

2
)  

J 0.004(Kg.m
2
) 

 0.007 

k 7.13  

mgl 0.8 (N.m)  
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It is desired to obtain the optimal control law such that the following performance index 𝒥 is 
minimized. 
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and 

h(x(tF))=0. Moreover, f(x), k(x) are differentiable with respect to x for a sufficient number of times 

and x=04 is the equilibrium point of the system. Furthermore, t0=0, tF=5, P(x(tF))=044. 
 

Step 1 (Description of the system as SDCs): 
To solve the optimization problem, the nonlinear functions f(x), k(x) must first be represented as 
SDCs. A suitable choice, considering [1], is as follows:  
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Step 2 (Description of the Hamiltonian matrix as SDCs): 
The separated Hamiltonian matrices can be derived: 
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Step 3.1 (the outer equations): 
The relations (24) have solutions as: 
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Step 3.2 (the state equations): 
According to (21), state variables relations in the initial layer correction are as follow: 
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Step 3.3 (the slow-fast SDREs): 
The slow- fast SDREs in (22) have 3 the less equations respect to the original SDRE. 
Considering (22), the SDRE relations in the final layer correction are as follow: 
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Step 3.4 (the optimal control law): 
Moreover, the optimal control law is as follow: 
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The state equations and SDREs are two-point boundary value problem (TPBVP) and dependent 
on state variables, but we have no state values in the whole interval [0,5]. To overcome this 
problem we solve the above equations by an iterative procedure [3, 4]. Now, running the 
simulation programs, Figures 3, 4 show the angular positions and velocities. 
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FIGURE 3: The slow state variables (The angular positions of q1, q2 and angular velocity of 1q ). 
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     FIGURE 4: The fast state variable (angular velocity of 2q ). 

 
Also, Figures 5 and 6 show the Riccati gains. 
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FIGURE 5: The Riccati gains of Ps.               
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FIGURE 6: The Riccati gains of Pf. 

 

From Figures 3 and 5, it can be seen that for any initial and final conditions on the slow 

manifold, for different values of  , states are given by outer solution. On the other hand, 
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Figures 4 and 6 show that for any initial and final conditions out of the slow manifold, the 

trajectories rapidly approach the slow manifold according to the fast manifolds. Moreover, 

Figure 7 shows the optimal control law. 
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FIGURE 7: The optimal control law u. 

 

5. CONCLUSION 
With the proposed method in this study, it is seen that the finite-horizon optimization problem of a 
class of nonlinear singularly perturbed systems leads to SDREs for slow and fast state variables. 
One of the advantages of SDRE method is that knowledge of the Jacobian of the nonlinearity in 
the states, similar to HJB equation, is not necessary. Thus, the proposed method has not only 
simplicity of the LQ method but also higher flexibility, due to adjustable changes in the Riccati 
gains. On the other hand, one of the advantages of the singular perturbation theory is that it 
reduces high-order systems into two lower-order subsystems due to the interaction between slow 
and fast variables. Note that SDREs in the proposed method have n1n2 the less differential 
equations respect to the original SDRE. Thus, the slow-fast SDREs have the simpler computing 
than original SDRE and provide good approximations of one. 
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Appendix A: The relation between the P(x) and Pnew(xnew)  

In order to compute the optimal control law, the relations between the Riccati matrices
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Now, multiplying (A2b) by   
22

, nnfsf IxxP  , the following relation is obtained. 

  
 

      
2

11

22
0,,,

,
, 2212212121

2111
21

1
22 nfsf

nn
nnfsf xxxPxxPxxxP

xxP

I
HHIxxP 


























  

 
(A3) 

In other words, we have: 

 
1

)(1 ns Oxx   (A4a) 

 
11

)(),(),( 2111 nnfss OxxPxxP    (A4b) 

 
22

)(),(),( 2122 nnfsf OxxPxxP    (A4c) 

   
12

)(,),( 2121 nnfsc OxxPxxP    (A4d) 

Where,     
 

.
,

,,
2111

21
1

22
11

22 












xxP

I
HHIxxPxxP

nn
nnfsffsc  Also, for =0, we have: 

soo xx 1  
(A5a) 

),(),( 2111 fososoooo xxPxxP   (A5b) 

),(),( 2122 fosofoooo xxPxxP   (A5c) 

 fosocoooo xxPxxP ,),( 2121   (A5d) 

 
Appendix B: Proof of Theorem 1 

 
a) The optimal control law 

According to =P(x)x [3] and (A4), substituting Riccati matrices in (6c), the  optimal control law 
would result as in (23). 
 
b) The slow manifolds in boundary-layer correction 

According to the singular perturbation theory, for =0, the fast variable should be derived with 

respect to the slow variable. Substituting =0 in (19), the outer-layer equations are obtained as 
follows: 
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Substituting (B4) in (B1a), we have: 

  ,),(|,),(),(),( 10001112121211 0
tttttxxxxxPxxSxxAx tooosoososo   

(B5a) 

.),(|,
),(),(),(

),(),(),(
1011

12
*

12
*

112
*

1

12
*

12
*

112
*

1

11

1
FFtso

ooosooo
T

sooooso

ooosooosooooso

osooso

o
tttttPP

xxxPxxAxxxQ

xxxPxxSxxxA

xPxP

x

F































 

 
(B5b) 

Thus, assuming that {Aso(x1o,x
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oo RRxx   [2], with rearrangement of (B5b), the SDRE of the slow 

variable is obtained as (22a). 
Remark 3: Note that under assumption of above, Pso 

is unique, symmetric, positive definite 
solution of the SDRE (22a) that produces a locally asymptotically stable closed loop solution [2]. 

Thus the closed-loop matrix As(x1o,x2)-Ss(x1o,x2)Pso 
is pointwise Hurwitz for (x1o,x2)12. 

Here, 12 is any region such that the Lyapunov function is locally Lipschitz around the origin.  
 
c) The fast manifold in initial layer correction 

Since the time scale will be changed as 


 0tt 
  in the initial layer correction, the time derivative 

in this scale will be changed as 
dt

d

d

(.)(.)



  in forward time. Considering (4b), we have: 
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(B6) 

Substituting (23) in (B6), according to (A4) and (14), the fast state equation in initial layer is 
obtained as (21b). 
 
d) The fast manifold in final layer correction 

Since the time scale will be changed as 



ttF  in the final layer correction, the time derivative 

in this scale will be changed as 
dt

d

d

d (.)(.)



 in backward time: 
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(B7) 
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Substituting =0 in (B7), we have  
120 ns  . Therefore, the final layer correction equation is 

obtained as: 
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(B8) 

Now, substituting (20b) and (17b) in (B8), we have: 
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(B9) 

 

Thus, assuming that   {A22o(x1o,x
*
2o), B2o(x1o,x

*
2o), (Q22o(x1o,x

*
2o))

1/2
} is stabilizable-detectable for 

  21
2

*
1 ,

nn
oo RRxx   [2], according to (A5) and (14), the SDRE of the fast variable is obtained as 

(22b). 

 
Remark 4: Note that under assumption of above, Pf

 
is unique, symmetric, positive definite 

solution of the SDRE (22b) that produces a locally asymptotically stable closed loop solution [2]. 

Thus, the closed-loop matrix A22(x1o,x2)-S22(x1o,x2)P
*
22o

 
is pointwise Hurwitz for (x1o,x2)12. 

Here, 12 is any region such that the Lyapunov function is locally Lipschitz around the origin.  
 

 


