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Abstract 
 

Simultaneous Localization and Mapping is a method used to find the location of a mobile robot 
while at the same time build a constructive map of its surrounding environment. This paper gives 
a brief description about a simple integrative SLAM technique using a Laser Range Finder (LRF) 
and Odometry data, primarily for indoor environments. In this project, a solution for the SLAM 
problem was implemented on a differential drive mobile robot equipped with a SICK laser 
scanner. 
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1. INTRODUCTION 
Simultaneous Localization and Mapping (SLAM) is a method used by mobile robot placed in an 
unknown location in an unknown environment to incrementally build a consistent map of this 
environment while simultaneously keeping the track of current location within this map. An 
intuitive understanding of the SLAM process can be conveyed through following example: 
Consider a simple mobile robot: a set of wheels connected to a motor and a laser range finder 
(LRF). The LRF sends out series of beams at small regular intervals and obtains the distance of 
objects from it at a given angular resolution. This information is stored in a file that can be used to 
build the map.  
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Rather than keep track of a large number of points to build a map (termed as point-based 
mapping) we instead extract geometric features from the information obtained and keep track of 
those instead. This results in a significant reduction in computational complexity. The geometric 
features chosen in this implementation are lines, since they are present predominantly in indoor 
environments. 
 
The SICK LMS-100 Laser range finder is used in this implementation. It has a 270° field view 
around the robot with angular step readings at 0.5°/0.25° resolution. The long range scan of 
about 20m makes it distinctive for its selection. Wheel encoders allow us to ascertain the 
orientation and speed of the robot. Motor drivers are used to control the speed of the wheels 
using a PID algorithm. The encoders from which odometry data is ascertained and the drivers are 
interfaced with a microcontroller.  
 
 

PROCESSOR

LMS  DATA
ODOMETRY 

DATA

 
FIGURE 1: System setup. 

The microcontroller transmits Odometry data to the computer for localization. The flowchart 
describing the whole process is shown below. 
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FIGURE 2: Flowchart of SLAM process. 
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2.  ODOMETRIC LOCALIZATION 
2.1.  Representing Robot Position 
The axes X and Y state an random inertial basis on the plane as the global reference frame or the 
origin. 

 

 
FIGURE 3: Global reference frame and the robot local reference frame. 

To state the location of the robot, we select a point P on the robot frame as its position reference 
point. {x, y} outlines two axes relative to P on the robot frame and is thus the robot’s local 
reference frame. The position of the robot P in the global reference frame is detailed by 
coordinates x and y, and the angular alteration between the global and local reference frames is 
given by θ. We can describe the pose of the robot as a vector with these three elements. 
 

                                                

 
 
 
                                    (1) 

 
To describe robot motion in terms of component motions, it will be needed to map motion along 
the axes of the global reference frame to motion along the axes of the robot’s local reference 
frame. This mapping is obtained using the orthogonal rotation matrix: 

 

                           
         

          
   

        (2) 

 

This matrix can be used to map motion in the global reference frame {x, y} to motion in terms of 
the local reference frame {x, y}. This operation is denoted by R(θ) Pxy  because the computation of 
this operation depends on the value of θ: 
 
                                    (3) 

 
2.2. Forward Kinematic Model 
The forward kinematics of the mobile robot captures how the robot moves, given its geometry and 
the speeds of its wheels. For example, the differential drive robot has two wheels, with radius rr 

and rl. Robot position reference point P cantered between the two drive wheels, and distance 
between the wheels l. Given rr, rl, l, θ and the spinning speed of each wheel, φr and φl, a forward 
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kinematic model would predict the robot’s total speed in the global frame of reference. i.e 
           . 

 

 
FIGURE 4: A differential-drive robot in its global reference frame. 

From     we know that we can compute the robot’s movement in the global reference frame from 

motion in its local reference frame: Ṗxy=         
 .  

 
Suppose that the robot’s local reference frame is aligned such that the robot moves forward 
along  , as shown in figure. First consider the contribution of each wheel’s spinning speed to the 
translation speed at P in the direction of   . If one wheel spins while the other wheel contributes 
nothing and is stationary, since P is halfway between the two wheels, it will move instantaneously 

with half the speed:               and              .In a differential drive robot, these two 

contributions can simply be added to calculate the    component of    
 . Consider, for example, a 

differential robot in which each wheel spins with equal speed but in opposite directions. The result 
is a stationary, spinning robot. As expected,     will be zero in this case.. Neither wheel can 

contribute to sideways motion in the robot’s reference frame, nor so    is always zero. Finally, we 

must compute the rotational component    of    
 . Once again, the contributions of each wheel can 

be computed independently and just added. Consider the right wheel (wheel 1). Forward spin of 
this wheel results in counter-clockwise rotation at point P. Recall that if the right wheel spins 

alone, the robot pivots around the left wheel. The rotation velocity    at P can be computed 
because the wheel is instantaneously moving along the arc of a circle of radius 2l:           
 

            
    

  
                             (4) 

 
The same calculation applies to the left wheel, with the exception that forward spin results in 
clockwise rotation at point P: 
 

                                 
    

  
                                (5) 

 
Combining these individual formulas yields a kinematic model for the differential-drive robot: 
 

 

    
         

          

 

 
          

  

                                 (6) 
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3. MOTION MODEL 

For a differential-drive robot the position can be estimated starting from a known position by 
integrating the movement (summing the incremental travel distances). For a discrete system with 
a fixed sampling interval    the incremental travel distances            are: 
 

                  
  

 
                            (7) 
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    (10) 

 
Where, 

            Path traveled in the last sampling interval. 
 
           Travelled distances for the right and left wheel respectively. 
 
Thus we get the updated position P(k+1) 
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By using the relation for    and    , we further obtain the basic equation for odometric  position 
update (for differential drive robots): 
 

         

 
 
 
  

 
 
 
 
  

       

 
      

       

 
 

 
       

 
      

       

 
 

       

  
 
 
 
 

                                                          (12) 

 
As we discussed earlier, odometric position updates can give only a very rough estimate of the 
actual position. Owing to integration errors of the uncertainties of      and the motion errors 

during the incremental motion         , the position error based on odometry integration grows 
with time.In the next step we will establish an error model for the integrated position         to 

obtain the covariance matrix of the odometric position estimate       . To do so, we assume 

that at the starting point the initial covariance matrix      is known. For the motion 
increment            we assume the following covariance matrix Q 
 

                   
           

         
                                                       (13) 

 
Where    and    are error constants representing the nondeterministic parameters of the motor 
drive and the wheel-floor interaction. As you can see, in equation above we made the following 
assumptions: (i) The two errors of the individually driven wheels are independent; (ii) The 
variance of the errors (left and right wheels) is proportional to the absolute value of the travelled 
distances. These assumptions, while not perfect, are suitable and will thus be used for the further 
development of the error model. The motion errors are due to imprecise movement because of 
deformation of wheel, slippage, unequal floor, errors in encoders, and so on. The values for the 
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error constants     and    depend on the robot and the environment and should be experimentally 
established by performing and analysing representative movements. 
 
If we assume that P and             are uncorrelated and the derivation of f is reasonably 
approximated by the first-order Taylor expansion (linearization), we conclude, using the error 
propagation law: 
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Once the error model has been established, the error parameters must be specified. One can 
compensate for deterministic errors properly calibrating the robot. However the error parameters 
specifying the nondeterministic errors can only be quantified by statistical (repetitive) 
measurements. 

 

4.  MAPPING  
Mapping is the subject of integrating the readings gathered with the robot's sensors into a given 
representation. Principal aspects in mapping are the representation of the surroundings and the 
interpretation of sensor data. While on the other hand, localization is the problem of 
guesstimating the pose of the robot relative to a map. Normally, one identifies between pose 
tracking, where the initial pose of the vehicle is well-known, and global localization, in which no a 
priori knowledge about the starting position is set. 

4.1. Feature Based Mapping 

The primary issue is how to accurately match sensed data against information in a priori map or 
information that has been collected so far. There are two common matching techniques that have 
been used in mobile robotics: point based matching and feature-based matching. Instead of 
working directly with raw scan points, feature based matching first transforms the raw scans into 
geometric features. These extracted features are used in the matching in the next step. This 
approach has been studied and employed intensively in recent research on robot localization, 
mapping, feature extraction, etc. Being more compact that they require much less storage and 
still provide rich and accurate information, algorithms based on parameterized geometric features 
are expected to be more efficient compared to point-based algorithms. 
 
Among many geometric primitives, line segment is the simplest one. It is easy to describe most 
office environments using line segments. A paper by Nguyen et all [2005] comes to the 
conclusion that the split and merge and Incremental are the preferred candidates for SLAM, 
because of their speed and good correctness. They mention that for real-time applications, Split-
and-Merge is clearly the best choice by its superior speed. It is also the first choice for localization 
problems with a priori map, where false pose is not very important. 

 
4.2. Landmark Extraction 
Landmarks are features which can easily be re-observed and distinguished from the environment. 
These are used by the robot to find out where it is (to localize itself). Landmarks should be re-
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observable by allowing them for example to be viewed (detected) from different positions and 
thus from different angles.  
 
Landmarks should be unique enough so that they can be easily identified from one time-step to 
another without mixing them up. In other words if you re-observe two landmarks at a later point in 
time it should be easy to determine which of the landmarks is which of the landmarks we have 
previously seen. If two landmarks are very close to each other this may be hard.  
 
One can easily translate a line into a fixed point by taking another fixed point in the world 
coordinates and calculating the point on the line closest to this fixed point. Using the robots 
position and the position of this fixed point on the line it is trivial to calculate a range and bearing 
from this. Using simple trigonometry one can easily calculate this point. 
Here illustrated using the origin as a fixed point: 
 

 
FIGURE 4: Getting extracted line landmark as a point. 

4.3. Map Building 
The sensor used to measure environment information and build environment map is a 2D laser 
scanner SICK. It has a scanning angle of 270 degrees with an angular resolution of 0.5 degree 
and a range error of less than 5mm. A local map is the representation of environment that laser 
range scanner perceives from its current position. A global map is the representation of 
environment that has been perceived previously. It is yielded by merging all local maps built 
previously. 

4.4. Local Map Building 

The formation of a local map consists of a number of steps and is implemented as follows: 
 
i) Clustering of points into segments 
From the first to the last point, if the distance between two neighbouring points is great than a 
threshold, then whole scan is split between these two points. After testing all distance of 
neighbouring points, a scan is split into different regions, denoted with Ri. Each region Ri consists 
of a set of points from Si to Et, where Si and Ei are respectively the first and the last point of the 
segment. Removal of Stray Segments: The number of points in each segment is counted. If the 
number of points in each segment is less than a given threshold, the segment is removed. 

 
ii) The Split-and-Merge Algorithm 
The algorithm splits the initial line by searching the particular point in between with the largest 
perpendicular line distance. This point is set as a new vertex, respectively a new segment 
endpoint, and builds two new segments with the former given endpoints. For the thereby new 
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generated segments the algorithm searches again the vertices. The algorithm stops the recursion 
in case that the distance to the farthest found point lies below a predefined threshold. The initial 
line is specified by the first and the last captured scan point. These therefore build the first and 
respectively the last vertex of our resulting Polyline. 
 
The ‘Merging’ component of the Split-and-Merge Algorithm involves calculating the distance 
between the two adjacent points of each vertex derived from the Split procedure. If the distance is 
found to be greater than a given threshold, the vertex is considered a stray point, and is ignored. 
 

 
 

FIGURE 5: Split and Merge (Iterative end point fit). 

iii) Finding the best-fit line using the method of least squares 
Having obtained the points using the split-and –merge algorithm that correspond to the vertices in 
each segment, the best fit line in the least-squared sense is obtained, considering all the points in 
each segment derived. 
 
The basic problem is to find the best fit straight line y = ax + b given that, for n ∈{1,…Ng}, the 
pairs (xn, yn) are observed. The method easily generalizes to finding the best fit of the form 

 
                                           (17)    

                              
It is not necessary for the functions    to be linearly in x – all that is needed is that y is to be a 
linear combination of these functions. It can be shown that the expression for the landmark 
extracted (r and α) from the feature line is as follows: 
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 r =                                                              (19) 
 
 

     
 

 
              

 

 
                                (20) 

 
 
Where 
 
    r, α - range and bearing of the extracted feature point 
    x, y-  x and y co-ordinates of all points in the line segment  
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iv) Finding projections of the line segments on the best-fit line  
Having found out the parameters of the best fit line, which also are the feature points extracted, 
we find the projection of the vertices on the best fit line in the following manner: 

 

    
    

    
                                                   (21) 
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ys=m   + m   
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But since if α = 0,180 or -180 we obtain an exception, we use the following formula in these 
cases: 
 
                                                  (25) 

 
 
                             (26) 

 

4.5. Global map building 

The main problem of global map updating is to solve the correspondence problem between l i e 
segments respectively from local map and global map. If a line segment in local map has 
corresponding line segment in current global map, then they are merged into one to update this 
line segment in current global map. Those line segments in local map that have not 
corresponding line segment in current global map are inserted into current global map according 
to their ordinal relation. The global map is built by merging repeatedly local maps. The ordinal 
relations of line segments are retained in merging. 
 
To determine whether given pair of lines is sufficiently similar to warrant merging, we apply a 
merge criterion based on the chi-squared test. The coordinates and covariance matrices of the 
two lines as found by our line fitting algorithm are first represented with respect to a common 
pose i. We then apply the chi-squared test to determine if the difference between two lines is 
within the 3 sigma deviance threshold defined by the combined uncertainties of the lines.  
 
The merge criterion is: 
 

            
     

                                        (27) 
 
Where  
 
P

i
L1, P

i
L2  - corresponds to the covariance matrices of the landmark in the local and global frames 

respectively. The difference between the landmark co-ordinates in the local and global frames are 
given as follows: 
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If the chi-squared test is satisfied, the local and global co-ordinates are merged to obtain a single 
landmark. 
 
The final merged landmark co-ordinates and covariance matrix is given by: 
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5.RESULTS AND ANALYSIS 
The mobile robot was placed in a corridor. A wall following algorithm was implemented such that 
the robot followed the wall observed to the right. Fig (7) illustrates the odometry path followed by 
the robot following the wall and Fig (8) shows the map obtained, until the robot veered 
dangerously close to a staircase. 
 

 
FIGURE 6: Localization data from odometry. 

   

   
 

FIGURE 7: Plot of the map obtained after Global Mapping. 
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6. CONCLUSION 
This paper illustrates a simplistic SLAM solution along with its implementation and results. The 
split-and-merge line feature and landmark extraction algorithms are explained in detail and are 
found to be accurate. The global map generated is found to be consistent in small-scale 
environments. 
 
It is possible to refine the solution provided in this paper by implementing extended Kalman filters, 
in order to obtain the best estimate of the robot position and map points. Different algorithms that 
consider the SLAM process a non-linear process such as FAST-SLAM may be implemented as 
well.This current technology can be used in various applications such as aerospace, a mobile 
robot on the moon, a coal mine where human entry is difficult, underwater monitoring in small and 
difficult to reach places.  
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