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Abstract 
 
Robot systems have recently been studied for real world situations such as space exploration, 
underwater inspection, and disaster response. In extreme environments, a robot system has a 
probability of failure. Therefore, considering fault tolerance is important for mission success. In 
this study, we proposed a distributed cooperative fault diagnosis method for internal components 
of robot systems. This method uses diagnostic devices called diagnosers to observe the state of 
an electrical component. These diagnosers execute each diagnosis independently and in parallel 
with one another, and it is assumed that they are interconnected through wireless 
communication. A fault diagnosis technique was proposed that involves gathering the diagnosis 
results. Further, computer simulations confirmed that the distributed cooperative fault diagnosis 
method could detect component faults in simplified fault situations. 
 
Keywords: Fault Detection, Distributed Cooperative System, Internal Component, Robot 
System. 

 
 
1. INTRODUCTION 

Robot systems have recently been deployed in many real world situations. Among other 
applications, mobile robot inspection systems for disaster-stricken areas, underwater inspection, 
and space satellites have been developed. The benefits of robot systems, particularly rescue 
robots, have been demonstrated in extreme environments [1], [2]. Herein, robot system refers to 
a mobile robot, such as rescue robots. These systems can decrease the risk associated with 
dangerous work and increase work efficiency. However, it is difficult to understand the state of an 
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extreme environment. A robot system has a probability of failure because extreme environments 
are dangerous not only for humans but also for robot systems [3]. 
 
In this context, discussion of fault tolerance is important to understand the reliability of robot 
systems. To date, many types of fault tolerance methodologies have been considered. For 
example, model-based, signal-based, and model-free methods have been proposed [4], [5]. 
These approaches assumed that fault tolerance was considered when the robot system was 
developed. However, many robot systems are already in operation worldwide, and it is not easy 
to implement fault tolerance capabilities for these robot systems. Discussion regarding attachable 
fault tolerances, specifically fault detection method and diagnosis for currently operational robot 
systems, is important. 
 
Previous research on general fault detection and diagnosis methods have focused on centralized 
architecture, and the systems required a large number of sensors [6]–[8]. Moreover, in the model-
based method, there is a need to design dynamic and environmental models of robot systems 
before operation, and real-time calculation is necessary. Therefore, previous work has the 
following drawbacks: 
 
 System architecture is centralized. If the main computer stops working, the fault diagnosis 

function becomes invalid as well. 
 Systems need environmental models, robot kinematic models, and real-time calculation. 
 It is difficult to apply to currently-operated robot systems. 
 
To increase the reliability of a robot system, a novel fault detection and diagnosis methodology 
that considers the above drawbacks must be developed. To do so, our research focused on the 
following features: 
 
 Decentralized system architecture 
 Model-free fault detection and diagnosis methodology 
 Attachable system for currently operating robot systems 
 
In this study, a distributed cooperative fault diagnosis method was proposed. This method 
focused on fault diagnosis of electrical components in the robot system’s body because robot 
systems typically consist of various electrical components. Although robot systems also have 
mechanical components, this research considered only electrical components, such as 
embedded computers, motor controllers, and motor drivers. To realize distributed fault diagnosis, 
the implementation of a small diagnostic device, called a diagnoser, in every component was 
proposed. 
 
The rest of the paper is organized as follows. Section 2 describes the previous approaches. 
Section 3 is an overview of the proposed distributed cooperative fault diagnosis method. Section 
4 provides details about the conditions of the computer simulation experiments and results. 
Section 5 contains concluding remarks. 

 
2. PREVIOUS APPROACH TO FAULT TOLERANCE 

Until now, numerous fault detection and diagnosis methods have been proposed. However, fault 
detection and diagnosis are elements of fault tolerance technology. It is difficult to define each 
technology independently, and the techniques overlap one another. To utilize previous research, 
attention was not only paid to fault detection and diagnosis but also to related research on the 
fault tolerance of a system. 
 
2.1 Faults in Robot Systems 
Okina et al. defined the fault of computer systems as the “difference between realizable and 
required function” [6]. A robot system has outputs, such as action and behavior, based on inputs, 
such as tele-operated commands and environmental information. In this study, based on the 
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definition of the fault by Okina et al., the fault of the robot system was interpreted as that 
occurring when the robot system gives an unexpected response to the input commands or 
information. 
 
On the other hand, a robot system is constructed from many types of electrical and mechanical 
components; the robot system cannot be down in all components’ broken cause with exception of 
explortion and radiation effect. Therefore the fault of a robot system is defined such as broken of 
the some components. In detail, based on the fault definition by Okina, the fault state of a robot 
system emerges when there are unexpected outputs from the internal components in the robot 
system. 
 
In addition, as the basic approach, it was assumed that the faulty component was the electrical 
component in the robot body without sensors, such as a camera, encoder, or measurement 
sensor for environmental information, because input information from the environment was 
unknown or unexpected based on the above fault definition. 
 
2.2 Typical Approach 
As mentioned above, many kinds of fault detection and diagnosis methods for robot systems 
have been discussed, such as model-based, signal–based, and model-free approaches. There 
are traditional techniques for fault detection and fault diagnosis [4], [5]. For example, outside the 
robot system domains, Lefebvre proposed an on-line fault diagnosis method using partially 
observed petri nets [9]. A petri net is effective for the representation of the state of a system; 
however, this method requires a model of the system, as is the case with model-based approach. 
 
Okina et al. proposed a signal-based fault diagnosis method [6]. However, this type of system is 
centralized and requires voltage and current values when the robot system is fault-free. 
Moreover, this system needs invasive sensors, such as current sensors, to observe the current 
state. 
 
In the model-free approach, fault tolerance utilizing learning algorithms is a representative 
technique. Liu et al. proposed a system using the credit assignment fuzzy cerebellar model 
articulation controller (FCA-CMAC) neural network for unmanned underwater vehicles [10]. The 
model-free approach does not require designing environmental and robot models. However, the 
learner is constructed with a centralized architecture. If the main computer equipped with learning 
mechanisms is broken, the fault diagnosis function is also inoperative. 
 
2.3 Multi-agent Approach 
In the fault tolerant domain, Parker proposed ALLIANCE, which is a multi-robot approach for 
redundant robot systems [11]. ALLIANCE realizes redundancy using cooperative control of teams 
of robots. It can detect the faults of one robot, and allow other robots take over the lost function to 
complete the required task. However, it cannot diagnose the cause of each fault. Christensen et 
al. proposed fault-tolerant swarms of robots [12]. This research involved a multi-agent approach 
and focused on the methodology and protocols for the recovery of robot swarms. However, it also 
cannot diagnose the cause of the robot fault. 
 
2.4 Computer Simulation Approach 
In recent years, run-time fault detection methods based on the comparison of simulated and real 
robot behavior have been proposed [13][14]. This is similar to the model-based approach 
because environmental and robot models are designed before running the system. This method’s 
approach to the run-time mobile robot fault detection leverages high performance computing 
resources. However, this method needs highly accurate environmental models, robot kinematics, 
and high accuracy observation of robot motion. It is difficult to implement in complicated real-
world robot systems. 
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2.5 Distributed Approach To Fault Diagnosis 
In the fault diagnosis of computer domains, distributed approaches have been proposed. For 
example, adaptive distributed system-level diagnosis (Adaptive-DSD) was proposed by Bianchini 
et al. [15]. This methodology has still been discussed and applied in recent years [16]. Figure 1 
(a) and (b) show the concept of Adaptive-DSD. For example, a computer network system that has 
six computers connected by communication is shown in Figure 1 (a). Black arrows indicate 
corresponding relationship of diagnosis. In this case, in a fault-free situation, computer    works 

as an autonomous distributed network. If    is broken,    can detect the fault of   . Then, 
obtained information about the fault of    is shared using the communication among the 

computers, and    changes the diagnosis target and communication path. In doing so, the 

system can retain the communication network and diagnostic function. After that, if    is broken 
(Figure 1 (b)),    can also detect the fault of   , and    changes the communication path to   .  
 
This concept may contribute to this research; however, a concrete diagnosis method is not 
defined, and Adaptive-DSD is assumed for usage in computers. 
 

  
 

(a)                               (b) 
 

FIGURE 1: A concept of Adaptive-DSD. (a) shows that one computer is broken. (b) shows that two 

computer nodes are broken, and the computer prior to the broken computer changes the diagnosis target to 
maintain the communication loop. 

 
3. PROPOSED METHOD 

To determine the fault tolerance of robot systems, one must go beyond previous research and the 
three keywords indicated in Section 1, which are “decentralized,” “model-free,” and “attachable.” 
Hence, in this study, a distributed cooperative fault diagnosis method (DCFD) is proposed. 
 
For this method, the following assumptions were made. A diagnostic device called a diagnoser 
observes the state of a component, such as its input-output signals, to detect a fault. Based on 
Adaptive-DSD, the result of the diagnosis can be shared using the wireless communication 
capabilities in each diagnoser. Finally, all diagnosers can obtain the overall diagnosis results. 
 
3.1 Model of Component 
In this study, for basic research, we assumed a simplified model for each internal electrical 
component, as shown in Figure 2. Component    has an input and output (Figure 2), and    
outputs the same input value as in the following equation:  
 

        
       
       

                                                          (1) 

 

 
 

FIGURE 2: Simplified model of internal electrical component for simulation. 
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3.2 Faults in Robot Systems 
Diagnosers can observe the input and output signals of their corresponding components (Figure 
2). Before diagnosis, diagnosers learn the input and output signals of the corresponding 
components using a learning algorithm. When diagnoser    diagnoses   ,    observes the 
signals of its corresponding component and compares the observed signal with its knowledge of 
the expected signal, as shown in the following equation. 
 

              
              

           

                  
           

                                       (2) 

 
Here,   is the input signal of the component.       is the output signal of component.   

     is the 

expected output of the component, which is calculated from   by the diagnoser using the learned 

input-output signal pair data. If the expected output value,   
    , is different from the observed 

output value,      , the component is in a fault condition. In contrast, if   
     is equal to       , 

the component is fault-free.  
 
3.3 Distributed Cooperative Fault Diagnosis 
The component architecture shown in Figure 3 was assumed. In this figure, three components 
and three diagnosers are in the robot body, and the components are connected in series. 
Diagnoser    is connected to component   . To detect the fault in a component, a diagnoser 
compares the observed signal and expected output signal, which was pre-calculated by learned 
data. If the observed signal and learned data are different, the component is faulty. When    is 

broken, other diagnosers (e.g.     ,     ) observe the state of    using an Adaptive-DSD 
technique [14]. To diagnose the fault of the diagnoser, neighboring diagnosers use signals, such 
as the heartbeat of the broken diagnoser. Moreover, the corresponding component,   , is 

referred to as a hidden component when the diagnoser,   , is broken. This is called a hidden 
component fault diagnosis problem (Figure 4). The DCFD method can estimate the state of 
hidden components using communication and cooperation with neighboring diagnosers. This 
method contributes to the detection of multiple faults, i.e. malfunction of components and 
diagnosers at the same time. 
 

 
 

FIGURE 3: Left side figure shows the specified model of a diagnoser with a component, and right side figure 

shows the simplified model. 
 
In Figure 5, Equation 2 is modified as follows to detect the    fault using observed input signal,  , 
and output signal,  . 
 

           
              

       

                  
       

                                            (3) 
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FIGURE 4: An example architecture of electrical components and diagnosers in a robot system.    

indicates a component, and    is a diagnoser. An arrow indicates a correspondence relationship of fault 

diagnosis. 

 

 
FIGURE 5: Hidden component fault diagnosis problem. 

 
4. COMPUTER SIMULATION 

Simulation experiments were carried out to confirm the effectiveness of DCFD in a computer-
simulated environment. In this computer simulation, the three simple components and diagnoser 
model were examined under the following fault conditions. 
 
4.1 Experimental Conditions 
4.1.1 Multiple Fault Situations 
The components, diagnosers, and their connections were set as shown in Figure 4. In this 
experiment, it was assumed that each diagnoser obtained the knowledge of the input-output 
signal pairs from learning before the experiment. In the initial state of the experiment, all 
components and diagnosers were fault-free. Experimental procedures were as follows: 
 
1) All components and diagnosers run with DCFD. 
2) After 60 seconds,    breaks down. 

3) After the breakdown of    , confirm that    can detect the fault of    using DCFD 

4) After 120 seconds,    breaks down resulting in a hidden component fault diagnosis problem. 
5) Confirm that    can estimate the fault of   . 
6) Finally, confirm that the DCFD method can estimate multiple faults. 
 
The proposed system executed the diagnosis and presented the results at the end of 
experimental operation. A component outputs the same value when it obtains an input signal. The 
input signal,        , alternated randomly every 0.5 seconds. Each diagnoser diagnosed the 
state of the component once every second. 
 
In this experimental setup, diagnosis results were not deterministic with one diagnosis because 
when the input signal of the component was ‘0’, the output signal was ‘0’ regardless of whether 
the component was broken or not. In other words, a diagnoser could detect the fault of 
components only when the input signal was ‘1’. In response to this problem, the likelihood of 
faults was adopted to increase the accuracy of fault diagnosis. Fault likelihood is given by    .   
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is the number of observed faults, and   is the number of diagnoses performed. Here,   is set to 
50. 
 
4.1.2 Three Types of Faults 
In the above experimental condition, it was confirmed that DCFD could detect both component 
and diagnoser faults at the same time. However, various fault behaviors exist in the actual 
components. In these experimental conditions, three fault types were set as the component fault 
states (Figure 6). The following fault types were adopted: 
 

 Fault condition A: stable fault with output ‘0’ 
 Fault condition B: stable fault with output ‘1’ 
 Fault condition C: intermittent fault 
 
Here, a “stable fault” means that the component output for any input is permanently 1 or 0. On the 
other hand, an “intermittent fault” alternates between the fault state and the fault-free state 
randomly. Note that fault condition A is the same fault condition as the above experiment. 
 
The observation targets for the result are    and   . Other experimental settings are the same as 
those described in the previous experiment. 
 

 
FIGURE 6: Expected output and three types of faults. 

 
4.2 Results 
4.2.1 Multiple Faults 
The results for the diagnosis are shown in Figure 7. The fault likelihood of    increases and 

converges to ‘1’ in 60 seconds. This result means that    can detect faults of    when    is 

broken. In Figure 7, the fault likelihood of    increases after 120 seconds; however, this result of 

   does not exhibit convergence to one value compared with the likelihood of   . The main cause 
of this phenomenon is that sometimes a diagnoser can detect a fault-free state of    regardless of 

whether    is broken or not. However, these results indicate effectiveness in solving the hidden 
component diagnosis problem by using a suitable threshold value. 
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FIGURE 7: Results of experimental condition ‘’Multiple faults‘’. Comparison of change of fault likelihood of 

diagnoser no.2 and component no.2. 

 
4.2.2 Three Type of Faults 
The results for the likelihood transition of the three fault types are shown in Figure 8. Note that the 
result of fault condition A is the same as that of the previous experimental condition. The 
likelihood of all types of fault conditions increases at 120 seconds, and the likelihood of fault 
conditions A and B becomes greater than 0.5. However, in fault condition C, the likelihood 
increases more gradually, and the value does not reach 0.5. 
 

 
 

FIGURE 8: Results of experimental condition “Three type of faults”. Comparison of change of fault likelihood 

in three types of faults. 
 
4.3 Discussion 
4.3.1 Accuracy of Fault Estimations 
The results for the incorrect estimation case are shown in Figure 9. In Figure 9, the likelihood of 
fault in the fault-free component is increased in    and   . The main cause of this incorrect 
estimation is a delay between the input and output. In this experiment, a propagation delay of 0.1 
seconds was designed between the input and output signals of the component. 
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In this case,    and    detect the difference between the input and output signals of their 

respective corresponding components. Therefore, the threshold value,   , should be set as    > 
0. 
 

 
 

FIGURE 9: Results of experimental condition ‘’Multiple faults‘’. Comparison of change of fault likelihood of 

diagnoser no.2 and component no.2. 

 
4.3.2 Threshold for Fault Detection 

The experimental results indicate that the DCFD can estimate the faults of    and    . However, 
the transition of fault likelihood from the DCFD can also be determined, and it is necessary to 
define a suitable threshold value to detect the fault of a component. 
 
The fault likelihood of the diagnoser becomes ‘1’, and it is easy to estimate the fault because 
diagnosers estimate the state of other diagnosers based on direct communication, such as heart 
beat. On the other hand, the change in likelihood of components is unstable. Therefore, a low 
threshold value should be set to estimate the fault. In fault conditions A and B, fault behavior is 
simpler than that in fault condition C. Therefore, the threshold value can be set between 0.4 and 
0.6. However, in fault condition C, transition of likelihood is lower than other fault conditions. In 
this case, to estimate the fault of fault condition C, the threshold value should be set at 0.1. 
 
The threshold depends on the system architecture and signal pattern. To apply this threshold to 
an actual robot system requires a discussion on determining threshold values on a case by case 
basis.  
 
4.3.3 Limitations of DCFD 

Experimental results indicate that DCFD can estimate the fault of    as a hidden component 

when   is broken. Moreover, if   ,   , or    is broken, DCFD can detect the fault using 
cooperation among surviving diagnosers. However, DCFD cannot estimate the fault state of a 
component located at the outer edges of a system when there are multiple faults. For example, in 
Figure 4, the fault states of    and    cannot be determined when the diagnosers    and    are 

broken because the surviving diagnoser cannot observe the signals   or  . 

 
5. CONCLUSION 
A DCFD method was proposed to diagnose the state of the internal electrical components in 
robot systems. Simulation experiments were performed under simplified conditions. The 
experimental results suggest that the proposed method can detect both diagnoser and hidden 
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component malfunction. This result indicates that the DCFD method has the potential to solve the 
hidden component fault diagnosis problem. 
 
In future, as described in Section 4.3.3, investigation of an estimation method for faults occurring 
in components located at the outer edge of a system is required. Once complete, the 
effectiveness of the DCFD method will be demonstrated in more complex and dynamic situations. 
In the current simulations, components and diagnosers are represented by simplified 
experimental models. Future experiments will involve extending this method to actual robot 
systems.  
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