
Abhishek Songra, Rama Shankar Yadad, Sarsij Tripathi

International Journal of Security, Volume (1) : Issue (1) 32

 MODIFIED APPROACH FOR SECURING REAL TIME APPLICATION

ON CLUSTERS

Abhishek Songra

Computer Science & Engineering Department

Motilal Nehru National Institute of technology, Allahabad, UP, India

sw0512@mnnit.ac.in

Rama Shankar Yadav

Computer Science & Engineering Department

Motilal Nehru National Institute of technology, Allahabad, UP, India

rsy@mnnit.ac.in

Sarsij Tripathi

Computer Science & Engineering Department

Motilal Nehru National Institute of technology, Allahabad, UP, India

cs0620@mnnit.ac.in

Abstract

In today arena security critical real time applications running over clusters are growing very rapidly. As an application running

on clusters demand both timeliness and security thus, an efficient scheduling algorithm is needed that have better performance in

terms of both number of task accepted and security value received. This paper modifies the security aware scheduling approach

[5] by utilizing the concept of task criticality and adaptive threshold value. Also, this paper discus the system architecture used,

mathematical model, lemmas and modified scheduling approach. Further, simulation studies have been carried out in MATLAB

(module for Real-time) to measure the performance of modified approach. The modified approach is applicable over wide range

of application differing in there requirement and have better performance.

 Keywords: Real time System, Scheduling, Security Services, Clusters

1. Introduction

A Real-time system is a system in which computations must satisfy stringent timing constraints besides providing

logically correct results i.e. a correct computation of the result must finish before its specified deadline is met.

Failure to meet the specified deadline in such system leads to catastrophic loss in case of hard real time systems

whereas degraded performance is observed in soft real time application.

Many real time applications are using clusters for satisfying the need of high computing power where nodes are

inter connected through high speed network. A real time applications using clusters faces security threats for

example in stock quote update and trading system, incoming requests coming from different business partner while

outgoing response from an enterprise back-end machine these application composed of clusters that has to satisfy

both timeliness of response and security requirements [13]. As cluster executes vast number of unverified

application submitted by vast number of different type of users both applications and users can be source of

security threats to cluster [20]. These applications are vulnerable to attacks such as: attack by malicious user,

malicious application running on clusters itself. The malicious users intercept applications running and launch

denial of service whereas blocking of resources is observed in the case of malicious applications. The security

threats to these applications are primarily related to the authentication, integrity, and confidentiality of application.

An attacker may breach the above security service by spoofing, snooping and alteration kind of attack. These

attacks are briefly defined below.

Spoofing attack is a situation in which one person or program successfully masquerades as another by falsifying

data and thereby gaining an illegitimate advantage.

Snooping attack is not necessarily limited to gaining access to data during its transmission. Hacker may gain

access to data while it is in transmission but can also gain access while the data is in not in transmission.

Alteration is a kind of attack in which a malicious user, which may be inside the cluster or outside the cluster, after

gaining access to data performs unauthorized changes to it.

Application having real time constraints running over clusters requires secure computation. These applications

have to satisfy both timeliness and security issues. Also, applications require preference of one security service to

another one and different security services require overhead. Thus, an efficient scheduling algorithm is needed that

achieves high performance in term of completing more number of computations while maintaining higher security

level.

Abhishek Songra, Rama Shankar Yadad, Sarsij Tripathi

International Journal of Security, Volume (1) : Issue (1) 33

Rest of the paper is organized as follows. Section 2 deals with related work whereas system model along with

modified scheduling approach are discussed in section 3. Section 4 includes simulation and result while paper is

being concluded in section 5.

2. Related Work

Here, first we discuss related work done in the area of real time scheduling, followed by cluster based security

issues and then proposed solution for problem. Extensive work has been done in the field of real time task

scheduling whereas few work is reported on scheduling of real time tasks with security constraints. Based on the

time of when scheduling decision, is taken scheduling algorithms are categorized as Offline (static) and Online

(dynamic). In offline scheduling is performed well before system starts functioning however, scheduling decision

are taken at run time in case of online. Authors in [8] have proposed an algorithm which schedules the task on

uniprocessor systems whereas scheduling algorithm for multiprocessor system is given in [9] [11].

In [10] a non preemptive static scheduling algorithm is used whereas dynamic scheduling algorithm for multi-

processor system is given in [11]. These algorithms did well for the real time systems but they fails to satisfy

security constraints required for real time cluster based system.

 T. Sterling and D. Savarese [14] used static scheduling on the clusters whereas dynamic scheduling approach is

employed in [15].These works are focused for scheduling non real time tasks with security constraints on the

multiprocessor systems and fail to satisfy the real time task requirement. Thus, Scheduling Real time task with

security on clusters has become open area of research and few studies has been made in this area. Manhee Lee et.

al. has discussed the security issues related with clusters [17] whereas grid computing discussed in [18].

 Xie et. al. [5] has used a security aware scheduling strategy for real time applications on clusters to satisfy

minimum security requirement. Scheduling decisions are taken based on earliest deadline first (EDF) [5].

Scheduling decisions are taken at two phase: first that satisfy the minimum security requirement while

improvement in security is received in second phase. Authors [5] uses improvement in second phase on the basis of

the arrival time, i.e., a job arrived later have lesser chance for improvement as compared to arrived earlier. The

improvement on the basis of arrival time may lead to a situation that already feasible task in phase 1may rejected.

This could be understood by an example given below.

 Consider a task having attribute () where , , , , , , are the arrival time,

execution time, finish time, deadline, amount of data to be secured, security level requirement and the criticality of

a task respectively. Also, a task requires q security services which are represented by set of security level

ranges, e.g., where is security level range for j
th

 security service. The security

criticality of a task is the cumulative security requirement of a task. A task is said to be more security critical if its

security requirement is more than threshold value. Detailed security criticality will be explained in section 3.1.5.

Consider set of two tasks (,) having attributes value as below.

=(0,4,18,150,200,[0.2,0.5],[0.3,0.5],[0.1,0.4])and = (1,3,20,222,150,[0.3,0.5],[0.2,0.6],[0.3,0.7]) Tasks requiring three security services (authentication, confidentiality and integrity) along with security level

range, given in square brackets. For task minimum authentication security level required is 0.2 and this is

compared with security level and corresponding overhead given in Table 5. Incase security requirement does not

directly match with table value next higher security level is being considered. For this authentication requirement

(0.2) is not matched with the value given in the table so, next higher value (0.55) is considered and corresponding

overhead is computed as authentication overhead as 90. Similarly minimum confidentiality (0.3) is selected from

Table 3 as 0.36 with overhead is 5.33ms (200/37.5). Table 4 is used to determine integrity overhead. Similarly we

can determine overheads of the three services for task . Finish time of a task is the sum of security overhead,

execution time of and waiting time due to higher priority task. The values are summarized in table 1(a) below.

Table 1(a): Feasibility of task set after phase one

Task Authentication

overhead (Min)

Confidentiality

overhead (Min)

Integrity

overhead (Min)

Finish time

(+Overhead+ wi)

Deadline

Abhishek Songra, Rama Shankar Yadad, Sarsij Tripathi

International Journal of Security, Volume (1) : Issue (1) 34

 90 5.33 8.368 107.701 150

 90 4 12.5 216.201 222

It is clear from the table that both task are feasible with minimum securities after phase 1.In second phase author[5]

consider task for improvement as its arrival time is earlier than T2 .Finish time of T1 after improvement in

services (authentication, confidentiality and integrity are 0.5,0.5 and 0.4 respectively) is 124.033 ms However

,finish time of become 232.533 ms which is more than its deadline leading to rejection of . That is either both

tasks are forced to run with minimum security or will be rejected shown in table 1(b).

Table 1(b): Feasibility of task set after phase two with existing approach

Task

Authentication

overhead (security

value)

Confidentiality

overhead

(security value)

Integrity

overhead

(security value)

Finish time

(+Overhead+ wi)

Deadline

90 (0.5) 9.483 (0.5) 20.55 (0.4) 124.033 150

 90(0.3) 4(0.2) 12.5(0.3) 232.533 222

 In this paper we modify criteria for selecting candidate task for the security improvement phase by using the

concept of task criticality other than its arrival time. For purpose of adaptation between improvement in security and

reduction in rejection of task, a threshold is considered. The value of threshold is determined dynamically, i.e.,

incase rejection is more the higher threshold value is taken; improvement in security is less consequently rejection

ratio may be reduced. The next section deals with system model followed by modified approach.

3. System Model

This paper uses on line scheduling approach which is targeted for real time applications having security

requirements on clusters. Cluster is a group of N nodes {N1, N2, N3 ….Nn) connected through a high speed network

where real time application having high computational and security requirements are submitted. These applications

due to their high computational demands are incapable of executing on a single node; hence they are partitioned into

sub application or tasks. For simplicity we presume that the tasks incorporated in an application are independent of

each other. Real time application is accepted if and only if the cluster can schedule the task so that they complete

within their respective deadline and ensures for at least minimum security requirement (related to application) in

phase 1. Improvement over minimum security guarantee may be achieved through utilization of available slack in

schedule. We consider a task set having n tasks, T = { , …… }. Each task is described with the attribute

() where is the arrival time, is the execution time, is the finish time is the

deadline, is the amount of data to be secured, is security level requirement, is the criticality of a task. Suppose

a task requires q security services which are represented by the security level ranges e.g.

. The parameter and assumptions are same as used in [5].

Before we proceed for modified scheduling algorithm in detail, we first discuss the various terms used in this paper.

These terms are summarized in Table 2.

Table 2: Terms and Description

 Term Description

 m Number of nodes in the cluster. The nodes may be or may not be identical.

 R Number of users submitting tasks to the cluster. A user can submit any task at any point of time.

 Execution time of a task .

 Arrival time of the task .

 Deadline of task . It is the time beyond which the utility of the result of the task degrades.

 is the allowable finish time of the task by which the utility of the result is within acceptable

quality of service.

 Criticality of the task .

Abhishek Songra, Rama Shankar Yadad, Sarsij Tripathi

International Journal of Security, Volume (1) : Issue (1) 35

 Security level value assigned to a security algorithm based on its performance.

 Security level of task

Amount of data that is to be secured.

Criticality Threshold of the cluster.

 rej_ratio Rejection ratio.

Min(rej_ratio) Minimum rejection ratio. It is a measure of quality of service of the cluster that must be

maintained.

Max(rej_ratio) Gives the extreme limit of tasks rejection in percentage.

As snooping, alteration and spoofing are three common attacks on cluster that can be handled by security services

such as Authentication, Integrity and Confidentiality. These services incurred computational overhead, which

depends upon amount of data secured used for securing these attacks. The following sub section describes detail

about these services along with mathematical model for computation of overhead as used in [5].

3.1 Security Overhead Model

This paper focused on deploying security services (authentication, integrity and confidentiality) to secure cluster

based real- time application against the basic attacks (spoofing, snooping and alteration). Snooping, an unauthorized

interception of information can be tackled by confidentiality service whereas authentication service is deployed for

spoofing. The alteration is unauthorized modification to information; this can be taken care by integrity services.

Different applications require different type of integration of these security services for example; one may weight

these services of equal importance whereas other may weight one service over another one. Thus, different

combination of these services leads to complex integration of these services. The security aware scheduler running

over complex integration has to adapt security overhead experience by a task in order to achieve desired quality of

services (QoS) may be measured as number of tasks accepted, cumulative security level etc. Similar type of

consideration is used in [5]. The security services are independent of one another. . The user can select different

security services from the available services to form a complex integrated security solution. The following

paragraph discusses detailed mathemetical model for confidentiality followed by integrity and then authentication.

3.1.1 Confidentiality Overhead:

Confidentiality is achieved by encrypting & decrypting both real time application as well as data to receive

safegaurd from malicious user. We consider eight standard encryption algorithms to calculate confidentiality

overhead which is shown in Table 3 where each security algorithm is assigned a security level in the range of 0.08 to

1 on the basis of its security performance. Beside these security algorithms (given in table) security of other

algorithm security overhead is calculated with the use of equation 1.

 (1)

 where νi
c
 is performance of the i

th
 () standard encryption algorithm and is the confidentiality

security level of task .

The security level of a algorithm is inversely proportional to algorithm’s performance.

In case required confidential security level of of task is Si
c
, the overhead for this service can be computed by the

use of equation 2 where £i is the amount of data (in terms of Bytes/KB/MB) which is to be secured & σ
c
(Si

c
) is a

function used for mapping a security level to its corresponding encryption algorithm’s performance.

Abhishek Songra, Rama Shankar Yadad, Sarsij Tripathi

International Journal of Security, Volume (1) : Issue (1) 36

 (2)

Table 3: Cryptographic Algorithms for Confidentiality Service

Cryptographic Algorithms SLi
c
: SL Security level :KB/ms

Seal 0.08 168.75

RC4 0.14 96.43

Blowfish 0.36 37.5

Knufu/Khafre 0.40 33.75

RC5 0.46 29.35

Rijndael 0.64 21.09

DES 0.90 15

IDEA 1.00 13.5

3.1.2 Integrity Overhead:

Integrity security service is used to guard data against unauthorized modification or tampering while task is

executing. We consider that seven integrity algorithms are deployed for providing integrity service and these

consideration are same as considered in [5]. Integrity is achieved by implementing hash function [24] where each

function is assigned a security level in accordance with its performance. The hash functions are shown in Table 4

along with their respective performance & security level.The security level for other hash function except shown in

table, can be computed from equation 3.

 (3)

Where νi
g
 is the performance of the i

th
 () hash function.

Table 4: Hash Function for Integrity Service

Hash Function SLi
g: Security level :KB/ms

MD4 0.18 23.90

MD5 0.26 17.09

RIPEMD 0.36 12.00

RIPEMD-128 0.45 9.73

SHA-1 0.63 6.88

RIPEMD-160 0.77 5.69

Tiger 1.00 4.36

Let Si
g
 is the security level of integrity service for task , the overhead due to integrity service can be computed

using equation 4.

 (4)

where £i is the amount of data whose integrity is to be assured and σ
g
(Si

g
) is a function used for mapping a security

level to its corresponding hash function’s performance.

3.1.3 Authentication Overhead:

Authentication is used to tackel spoofing attack. The authentication service insured that all task must be submitted

by authorized users. Three authentication methods are used in paper which is shown in Table 5 where each

authentication method is assigned a security level value. Security level of a required authentication method (other

than given in table 4) can be calculated using equation 5.

 (5)

Abhishek Songra, Rama Shankar Yadad, Sarsij Tripathi

International Journal of Security, Volume (1) : Issue (1) 37

where is the performance of i
th

 authentication method .

Authentication overhead ci
a
(Si

a
) of task is a function of s security level Si

a
.

Table 5: Authentication Methods for authentication service

Authentication Methods SLi
a: Security Level Computation Time(ms)

HMAC-MD5 0.55 90

HMAC-SHA-1 0.91 148

CBC-MAC-AES 1 163

3.1.4 Security Overhead Model:

The overall security overhead for task which is the sum of overhead incurred by each of the three security

services imployed in forming the integrated security solution , can be computed using equation 6. Consider a task

requires w security services in sequential order and si
k
 and ci

k
 be the security level & security overhead of the k

th

security service applied on the task respectively. The overall security overhead of task can be calculated using

equation 6.

 (6)

 3.1.5 Security Criticality

 The term security criticality is extracted from security services ranges for a given task and it is cumulative security

requirement of task for different security services. For example already considered in section 2 the security

criticality of task is the average of lowest limit of the range for three security services ,i.e., security criticality of

task () is (0.2+0.3+0.1)/3 = 0.2 and for is 0.2667 . Thus is more security critical than .

3.2 System Architecture Used

System architecture used in this paper consist of ‘m’ identical nodes connected through a high speed network,

where real time task submitted by the ‘r’ number of users is shown in Figure 1. The schedule queue maintained by

admission controller is a buffer used to hold newly arrived task without any consideration. The task submitted by

the user is dispatched to the accepted queue if it pass acceptance test. A task is said to be pass acceptance test if

task is able to complete in its deadline with minimum security requirement. This acceptance test is the

responsibility of admission controller. A task fail to pass the acceptance test is said to be rejected and such task are

places to the rejected queue. In contrast to acceptance test performed by admission controller (where acceptance

test of individual task is taken into account) real time scheduler performed feasibility analysis of newly accepted

task along with other task waiting for service or partially executed. A task passes feasibility analysis join dispatch

queue where security enhancement is achieved (phase 2). A task fail to satisfy feasibility test join rejected queue

and accepted task is dispatched to local queue of nodes in cluster. Similar type of system architecture is used in [5].

Abhishek Songra, Rama Shankar Yadad, Sarsij Tripathi

International Journal of Security, Volume (1) : Issue (1) 38

 Fig.1 System Architecture Used

An application submitted to the cluster has the following property.

Prpoerty1 This paper considers hard real time application submitted to the cluster .The application is composed of

‘n’ independent tasks requesting different level of security. An application is said to be accepted if and only if all

tasks are feasible. Each node estimates the wait time of on node , will be the sum of remaining time of

the executing task interrupted and execution time of all the tasks of higher priority, thus,

 where H refers to the set of higher priority tasks (having

deadline earlier to that of task).

After estimation of waiting time on a node, cost of the minimum security level feasibility analysis have been

performed to obtain a valid schedule. A valid schedule can be stated by the following lemma used in [5].

Lemma 1 A valid schedule is the one in which the incoming task can be scheduled on at least one node on the

cluster such that it can be granted minimum security guarantee without missing its own deadline nor forcing any

previously accepted task to miss its respective deadline. Mathematically it is written as,

 (i)

 (ii)

 Where are the worst case execution time, estimated wait time of the task on node respectively. The

is the allowable finish time of the task by such that utility of the result is within acceptable quality of service.

Proof: If a task misses its own deadline then the utility of the result is lost. If it forces any previously accepted task

to miss its deadline then an entire application will fail as refer property 1. In case, a task is accepted its security

guarantee is improved in the best effort way if and only if the criticality of the task is more than the threshold of the

cluster. This threshold is dynamically adjusted to maintain a desired QoS (rejection ratio not more than the value

allowed for it) on the cluster i.e. to provide lower rejection ratio by allowing more tasks to be accepted by increasing

the threshold. This can be stated as the following lemma.

Property 2: The estimated waiting time of a task is given as where and

are execution time and overhead of security on node j respectively of task (such that) and its

arrival time is ,i.e., the task may have to wait more than its estimated time because of the arrival, of a higher

priority task before it can be scheduled. The estimated wait time of can be given as

 where H refers to set of higher priority tasks

(having deadline earlier than the task), refers to the exact time by which the higher priority

Abhishek Songra, Rama Shankar Yadad, Sarsij Tripathi

International Journal of Security, Volume (1) : Issue (1) 39

task actually completes (by taking execution time between best and worst case), the refers

to the execution time expected to be taken by the task in worst case.

Lemma 2: Threshold of a cluster is proportional to the rejection ratio on the cluster.

Proof: The value of the threshold of the cluster can lie between 0 and 1. If the value of threshold is equal to zero it

indicates that all tasks will be improved in the best effort way at the time of acceptance, hence each task will

demand maximum security overheads and will take at higher computation time. In such case, less number of tasks

can be accepted. If the value of threshold is one then all tasks will be accepted with minimum security overhead and

will be improved later at the time of their execution (if slack for improvement exists), hence more number of tasks

can be accepted hence, lowering the rejection ratio. Thus threshold is directly proportional to rejection ratio.

3.3 Modified Security Aware Scheduling Approach (MSASA)
In [5] authors have used improvement in the security of a task on the basis of first come first service and reject a

tasks whose minimum security requirement is not satisfied. As a result the scheme faces higher rejection ratio and

lesser improvement in security too. In this paper beside given preference on the first come first service basis we

schedule task with earliest deadline first to satisfy minimum security requirement. However, in improvement phase

preference is given to more critical task (measured in terms of security requirement)

The security benefit received by a task is measured using security level function is given by equation 7.

 (7)

 denotes all possible schedules for task and is a scheduling decision for . For a given a real

time task , the security benefit is maximized by security level controller using the following security benefits

(SB), security value (SV) constraints as given below:

 (8)

The security level of task is increased up to a level at which task completes with in its deadline and does not make

any previously accepted tasks to miss their deadline. The following security value function needs to be maximized

under certain timing and security constraints:

 (9)

Where, p is the number of submitted tasks, yi is set 1 if the task is accepted and is set to 0 otherwise. Our aim is to

schedule tasks, while maintaining the guarantee ratio, in a way to maximize equation 10.

 (10)

After the possible improvement in the task’s security level it is dispatched to node accepting it and promising the

best security level or minimum wait time (if less critical).The modified security aware scheduling algorithm is given

below.

 Improve_security ()

 Arrange security services according to their weights

 For each security services do

 Calculate overhead for for kth security service

 EFTij= wij + +

 If (EFTij > Di)

 Decrease break

Abhishek Songra, Rama Shankar Yadad, Sarsij Tripathi

International Journal of Security, Volume (1) : Issue (1) 40

 Increase

 Continue till security level of all security services is not maximized

 MSASA Algorithm ()

//Input: Task to be scheduled with their security requirements

//Output: Tasks are scheduled on nodes.
For every task arriving into schedule queue.

 For every node Nj do

 Calculate wait time of on Nj is wi
j

 Calculate cost of on Nj is ci
j
 (min (SL))

 Estimated finish time EFTi
j
 = wi

j
 + ei + ci

j
(min (SL))

 If (EFTi
j
 < di)

 Accepti
j
=1 on the node Nj

 Else

 Accepti
j
=0 on node Nj

 If (accepti
j
 ==1 && criticality of > threshold Th)

 Call improve_security ()

 If task is accepted on any node then

 Increase accepted task

 Select the best node for scheduling (let it be Nk)

 If (my_id==k)

 Insert the task in local queue based on EDF

 Delete the task from the arrive queue

 Else

 Increase rejected_task

 Rejection_ratio = rejected_task / (rejected_task+accepted_task)

 if (rejection_ratio > MAX(rejection_ratio))

 Increase threshold Th

 Else

 Decrease threshold Th

 Continue with next task if any

Let us consider task and used in the section 2.Now we will examine the effect of the modified approach on

these two tasks. As we know task is more security critical than and in section 2 from table 1(a) it is clear

that both task are schedulable with minimum security requirements whereas from table 1(b) it is evident that

improving security of task causes task to miss its deadline. By our modified approach the task is

accepted at minimum security requirement and security improvement is done in task . These results are

shown in the table 5.

 Table 5: Feasibility analysis after improvement phase with modified approach

Task

Authentication

overhead(security

value)

Confidentiality

overhead(security

value)

Integrity

overhead(security

value)

Finish time

(+Overhead+ wi

)

Deadli

ne

 90(0.2) 5.33(0.3) 8.368(0.1) 107.701 150

 90(0.55) 5.11(0.46) 15.416(0.45) 220.227 222

4. Performance measurement and discussion: The performance of modified security aware scheduling approach

(MSASA) is measured through simulation in MATLAB environment using scheduling tool. The simulation

Abhishek Songra, Rama Shankar Yadad, Sarsij Tripathi

International Journal of Security, Volume (1) : Issue (1) 41

parameters used in this paper is same as used in [5] and are summarized in table 6. The performance of MSASA is

compared with that of security aware scheduling approach (SASA) [5]. The key parameters are guarantee ratio (ratio

of number of tasks accepted over total number of tasks arrived in the system) and security value received (sum of

achieved security for the entire accepted task).

 Table 6: Simulation Parameters

Parameter Value (Fixed)-(Varied)

β (Deadline base, or Tbase)

Execution time ei

Required Security Service

Weight of Authentication

Weight of Confidentiality

Weight of Integrity

Threshold

(0ms) - (10,50,100……800)ms

Uniform random number [5, 20].

(Mixed)- (confidentiality only, Integrity Only, Authentication Only)

(0.2)- (0.1,0.3)

(0.5)- (0.1,0.2……0.8)

(0.3)- (0.1,0.2……0.8)

(0.5)- (0.1,0.2…….1)

Generation of task set:

Task has Poisson distribution arrival pattern with execution time uniformly generated. The range of security services

are chosen by selective uniform random number between 0.1 to 1.0.

We used the following equation to generate s deadline di.

 (11)

Where, = arrival time of task, = execution time of task and is maximal security overhead which is

computed as follows:

 (12)

Where, represents the overhead of the j
th

 security service for when the corresponding

maximal requirement is satisfied.

4.1 Results and discussion:

Simulations results are obtained in variety of applications requesting different type of services with different

security levels. In following section we first discuss effect of Tbase for application where all there security

requirements are needed followed by application requesting only special kind of security.

Effect of Tbase for all security requirements: Figure 2 (a) and 2 (b) shows performance of modified security

aware scheduling approach for the case where authentication, integrity and confidentiality services are required.

Figure 2 (a) measured the performance in term of guarantee ratio whereas security value is measured in Figure 2(b)

.It is observed that with increment in Tbase both guarantee ratio and security value increases but this increment in

performance is more in MSASA as compared to SASA. This is because increment in Tbase deadline of a task

relaxed giving better performance in both cases. However , in improvement in rejection ratio by the use of threshold

we decrease the number of task whose security is improved and accept more number of tasks with minimum

security this gives better performance in both terms as compared to that received incase of existing one.

30%

40%

50%

60%

70%

80%

90%

G
u

a
ra

n
te

e
 r

a
ti

o

Guarantee ratio Vs. Tbase for All Security Services

SASA

MSASA

2

3

4

5

6

S
e

c
u

ri
ty

 V
a

lu
e

Security Value Vs. Tbase for All Security Services

MSASA

SASA

Abhishek Songra, Rama Shankar Yadad, Sarsij Tripathi

International Journal of Security, Volume (1) : Issue (1) 42

 .

Fig 2(a): Effect of Tbase. Fig 2(b): Effect of Tbase

 Effect of Tbase for authentication service only: Performance of MSASA is shown in Figure 3(a) and 3(b) for the

case where application request for authentication services. It is observed that guarantee ratio of modified approach

increases with increment in Tbase value. However, security value received is almost same both of the approach.

Fig3 (a): Impact of the Authentication service Fig 3(b): Impact of the Authentication Service

Effect of Tbase for confidentiality service only: Figure 4(a) and 4(b) shows the performance impacts of

confidentiality service. We observe from the figure that modified approach performs better than existing one of both

guarantee ratio and security value received. The observed result is having similar pattern as observed for the case

requiring all three security services.

Fig 4(a): Impact of the Confidentiality Service Fig4 (b): Impact of the confidentiality Service.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 20 40 60 80 100 120

G
u

a
ra

n
te

e
 R

a
ti

o

Tbase (Time Units)

Guarantee Ratio Vs. Tbase when only Authentication used

SASA

MSASA

3.8

3.9

4

4.1

4.2

4.3

4.4

4.5

4.6

0 50 100 150

S
e

c
u

ri
ty

 V
a

lu
e

Tbase (Time Units)

Security Value Vs. Tbase when only

Authentication used

SASA

MSASA

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 50 100 150

G
u

a
r
a

n
te

e
 R

a
ti

o

Tbase (Time Units)

Guarantee Ratio Vs. Tbase when only confidentiality used

SASA

MSASA

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150

S
e

c
u

r
it

y
 V

a
lu

e

Tbase(Time Units)

Security Value Vs. Tbase when only confidentiality used

MSASA

SASA

Abhishek Songra, Rama Shankar Yadad, Sarsij Tripathi

International Journal of Security, Volume (1) : Issue (1) 43

Effect of Tbase for integrity services only: The impact of integrity service is shown in figure 5(a) and 5(b).

Similar type of trained is obtained as observed in the case confidentiality service only.

\

Fig 5(a): Impact of the integrity Security Service Fig 5(b): Impact of the integrity Security Service

5. Conclusion:

Security and timeliness both are equally important parameter for real time applications running over clusters. In this

paper we propose a modified security aware scheduling approach that utilizes the concept of criticality and threshold

based improvement in security of task over its minimum security requirement. This paper discusses system

architecture, mathematical modeling and modified approach. The performance of modified approach is observed to

simulation studies and example used. It is observed that modified approach have improvement about 15 % in terms

of both guarantee ratio and security value received. The modified approach is applicable over wide range of

application requesting different kind of security services and trimming constraints.

References:

1. Makan Pourzandi, Ibrahim Haddad, Charles Levert, MiroslawZakrzewski: A New Architecture for Secure Carrier-

Class Clusters. IEEE International Conference on Cluster Computing, 23-26 Sept. 2002, Page(s):494 – 497.

2. Dessouly, Alaa Amin and Reda Ammar and Ayman El: Scheduling Real Time Parallel Structures on Cluster

Computing with Possible Processor Failure. IEEE 9th International Symposium on Computers and Communications,

Volume 1, 28 June-1 July 2004, Page(s):62 – 67.

3. Parnas, J.Xu and D.L.: Scheduling Processes with Release Times, Deadlines, Precedence and Exclusion Relations.

Transactions on Software Engineering, IEEE Volume 16, Issue 3, March 1990, Page(s):360 - 369

4. SHILOH, O. t. Amnon BARAK: Scalable cluster computing with MOSIX for LINUX. In Proceedings of 5th Annual

Linux Expo, pages 95--100, May 1999.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 50 100 150

G
u

a
ra

n
te

e

R

a
ti

o

Tbase (Time Units)

Guarantee Ratio Vs. Tbase when only integrity used

SASA

MSASA

0

1

2

3

4

5

6

7

0 50 100 150

S
e

c
u

ri
ty

 V
a

lu
e

Tbase (Time Units)

Security Value Vs. Tbase when only Integrity used

MSASA

SASA

Abhishek Songra, Rama Shankar Yadad, Sarsij Tripathi

International Journal of Security, Volume (1) : Issue (1) 44

5. Qin, Tao Xie and Xiao: Scheduling Security Critical Real Time Applications on Clusters. IEEE transactions on

computers, Vol. 55, no 7, pp. 864-879 July 2006.

6. Gagne, T.Shepard and M: A Pre-Run-Time Scheduling Algorithm for Hard Real Time Systems. Transactions on

 Software Engineering, IEEE Volume 17, Issue 7, July 1991, Page(s):669 - 677.

7. X. Zhang, Y. Qu, and L. Xiao.: Improving Distributed Workload Performance by Sharing both CPU and Memory

Resources. 20th International Conference on Distributed Computing Systems, IEEE. 10-13 April 2000, Page(s):233 –

241.

8. Kavi, Wenming Li and Krishna: A Non Preemptive Scheduling Algorithm for Soft Real Time Systems. Computers &

Electrical Engineering, Volume 33, Issue 1, January 2007, Pages 12-29.

9. O.Elkeelany, M.matalgah, K.Sheikh: Performance Analysis of IPSEC Protocol: Encryption & Authentication.

International conference on Communication IEEE 2002. Volume 2, page(s):1164-1168.

10. Martel, K. Jeffay and C. U: On Non-Preemptive Scheduling of periodic and Sporadic Tasks: Proceedings of the 12th

IEEE Real-Time Systems Symposium, San Antonio, Texas, December 1991, IEEE Computer Society Press, pp. 129-

139.

11. M. L. Dertouzos and A. K Mok : Multi-Processor Online Scheduling of Hard Real- Time Tasks: IEEE Transactions

on Software Engineering, Vol. 15, No. 12, December 1989 , pp. 1497-1506.

12. J.Deepkumara, H.M. Heys and R.venkatesan: Performance Comparison of Message Authentication Code for Internet

protocol Security. www.engr.mun.ca/~howard/PAPERS/necec_2003b.pdf 2003.

13. Genesis, M. H. A.M. Goscinski and J. Silock: The operating system managing parallelism and providing single system

image on cluster. LNCS volume 2790/2004, publisher Springer Berlin / Heidelberg.

14. Savarese, T. Sterling and D : A parallel workstation for scientific computation. Proceedings of the 24th International

Conference on Parallel Processing, August 14-18, 1995, Urbana-Champain, Illinois, USA. Volume I: Architecture.

15. A J.Hong, X. Tan and D. Towsley: performance analysis of minimum laxity and earliest deadline scheduling in a real

time system. IEEE Transactions on Computers, Volume 38, Issue 12, Dec. 1989, Page(s):1736 - 1744.

16. Foster, Ian, Nicholas Karonis: Managing Security in High Performance Distributed Computations. Journal of Cluster

Computing Volume 1, Issue 1 pages 95-107, publisher Springer Netherlands 1998.

17. Manhee Lee, Eun Jung Kim, Ki Hwan Yum: An overview of security issues in cluster interconnects. Sixth IEEE

International Symposium on Cluster Computing and the Grid Workshops, 2006. Volume 2, 16-19 May, Page(s):9 pp.

18. Ian Foster, Carl Kesselman, Gene Tsudik, Steven Tuecke : A security architecture for computational grids: Proceedings

of the 5th ACM conference on Computer and communications security CCS 1998.

19. Ferrari, Adam et al. A flexible security system for Metacomputing Environments

www.cs.virginia.edu/papers/hpcn99.pdf 1999.

20. R. David, S. Son and R. Mukkamala: Supporting Security Requirements in Multilevel Real Time Database. IEEE

Symposium on Security and Privacy, 8-10 May1995, Page(s):199 – 210,.

21. R. Mukkamala and S. Son: A Secure Concurrency Control Protocol for Real-Time Database: IFIP Workshop on

Database Security. 1995.

22. S.H. Son, C. Chaney, C. and N. Thomlinson: Partial Security policy to Support Timeliness in Secure Real Time

Databases. IEEE Symposium on Security and Privacy, 3-6 May 1998, Page(s):136 – 147.

23. Bosselares, R.Govaerts : Fast Hashing on the Pentium. Proceedings of the 16th Annual International Cryptology

Conference on Advances in Cryptology. Springer-Verlag, 1996 Pages: 298 - 312.

