
Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 46

Preference of Efficient Architectures for GF(p) Elliptic Curve Crypto
Operations using Multiple Parallel Multipliers

Adnan Abdul-Aziz Gutub aagutub@uqu.edu.sa

Center of Excellence in Hajj and Omrah Research,
Umm Al-Qura University P.O. Box: 6287, Makkah 21955, Saudi Arabia

Abstract

This paper explores architecture possibilities to utilize more than one multiplier to
speedup the computation of GF(p) elliptic curve crypto systems. The architectures
considers projective coordinates to reduce the GF(p) inversion complexity through
additional multiplication operations. The study compares the standard projective
coordinates (X/Z,Y/Z) with the Jacobian coordinates (X/Z2,Y/Z3) exploiting their
multiplication operations parallelism. We assume using 2, 3, 4, and 5 parallel
multipliers and accordingly choose the appropriate projective coordinate efficiently.
The study proved that the Jacobian coordinates (X/Z2,Y/Z3) is preferred when single
or two multipliers are used. Whenever 3 or 4 multipliers are available, the standard
projective coordinates (X/Z,Y/Z) are favored. We found that designs with 5 multipliers
have no benefit over the 4 multipliers because of the data dependency. These
architectures study are particularly attractive for elliptic curve cryptosystems when
hardware area optimization is the key concern.

Keywords: Modulo multipliers, Elliptic curve cryptography, Jacobian projective coordinates, Parallel multipliers

crypto hardware.

1. INTRODUCTION

Elliptic Curve Cryptosystem (ECC) is a security system based on the discrete logarithm problem over
points on an elliptic curve, proposed in 1985 by Victor Miller [1] and Niel Koblitz [2]. Although
nowadays, ECC just exceeded\ 20 years old, its reliability is still suspect, with no significant
breakthrough in determining weaknesses in the algorithm [3, 4]. In fact, the ECC problem appears
very difficult to crack, implying that key sizes can be reduced in size considerably, even exponentially
[5], particularly when compared to the key size used by other popular cryptosystems. This makes
ECC become a promising practical replacement to the RSA, one of the most accepted public key
methods known [6]. ECC promises to offer the same level of security as RSA but with much smaller
key size. This advantage of ECC is being recognized recently where it is being incorporated in many
standards [4, 28, 31]. In 1999, the Elliptic Curve Digital Signature Algorithm was adopted by ANSI,
and it is now included in the ISO/IEC 15946 draft standards. Other standards that include Elliptic
Curves as part of their specifications are the IEEE P1363 [7], the ATM Forum [8], and the Internet
Engineering Task Force [9].

ECC systems can be implemented in software as well as hardware [10-20]. Hardware is preferred due
to its better speed and security [5, 14, 15, 30]. Software, on the other hand, provides flexibility in the
choice of the key size [13], which is also a feature adopted in hardware using “scalable multipliers” as
clarified in [26, 29]. For cryptographic applications, it is more secure to handle the computations in
hardware instead of software. Software-based systems can be interrupted and trespassed by
intruders more easily than hardware, jeopardizing the whole application security [21].

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 47

Several ECC hardware processors have been proposed in the literature recently for Galois Fields
GF(p) including GF(2

k
) [11, 12, 15, 18-20, 26, 28-31]. The design of these processors is based on

representing the elliptic curve points as projective coordinate points [11, 3, 15, 18, 26] in order to
eliminate division, hence inversion, operations. It is known that adding two points over an elliptic curve
requires a division operation, which is the most expensive operation over GF(p) [3, 22]. There are
several candidates for projective coordinate systems. The choice thus far has been based on
selecting the system that has the least number of multiplication steps, since multiplication over GF(p)
is a common operation and the next most time consuming process in ECC.

In this paper we propose that the choice of the projective coordinate system should also depend on its
inherent parallelism. High-speed crypto processors are crucial for today’s security applications [21]. It
will be proven in our work that parallelism can be a practical solution for meeting this requirement. We
recommend using scalable GF(p) multipliers reported in [23] since they lead to wide range of
hardware flexibility and trade-offs between area and time, compared to conventional GF(p) multipliers.
The scalable multipliers allow the VLSI designer to choose between area and time as required by the
application. Scalable multipliers are implemented in digit serial fashion, which is more efficient than
both unpipelined and pipelined parallel multipliers for algorithms with repeated multiplications such as
that found in ECC. It is worth noting that using pipelined parallel multipliers is not efficient for ECC
where the multiplication of any iteration cannot begin before the multiplication operation of the
previous iteration is completed. Also note that any ECC processor must implement the procedures of
projective coordinates efficiently since they are the core steps of the point operation algorithm.

The main contribution of this paper can be viewed at the architectural level to make it utilize the
parallelism within the projective coordinate procedure efficiently. The outline of the paper is as follows.
In Section 2, we provide a brief theoretical background to elliptic curve cryptography, followed by an
illustration of encryption and decryption. Section 2 also, outlines the algorithm used for ECC
multiplication which is the basic concept behind using elliptic curve in cryptography. The elliptic curve
point addition and doubling are elaborated using projective coordinates in Section 3, followed by the
description of the proposed possible parallelization toward hardware architectures in Section 4, which
will present the modeling and scheduling of data flow studies. The architecture efficient controller
choice and area time cost of the different hardware is presented in Section 5. This is followed by the
conclusions of the paper in Section 6.

2. ELLIPTIC CURVES OVER GF(P)

2.1 Theoretical Background

It will be assumed that the reader is familiar with the arithmetic over elliptic curves. For a good review
the reader is referred to [3]. The elliptic curve arithmetic of GF(p) is the usual mod p arithmetic. The
elliptic curve equation over GF(p) is:

y
2
 = x

3
 + ax + b ; where p > 3, 4a

3
 + 27b

2
 ≠ 0, and x, y, a, b∈ GF(p).

There is also a single element named the point at infinity or the zero point denoted ‘ϕ’. By adding this
point, the projective version of the curve is obtained. If P and Q are two points on the elliptic curve, a
third point which is the intersection of the curve with the line through P and Q can be uniquely
described. If the line is tangent to the curve at a point, then that point is counted twice; and if the line

is parallel to the y-axis, we define the third point as the point ϕ (zero point). Exactly one of these
conditions holds for any pair of points on an elliptic curve. If a point on the elliptic curve is to be added
to another point on the curve or to itself, some special addition rules are applied, depending on the
finite field used.

The addition rules in this field GF(p) are as follows:

ϕ = -ϕ

(x, y) + ϕ = (x, y)

(x, y) + (x, -y) = ϕ

The addition of two different points on the elliptic curve is computed as shown below:

(x1 , y1) + (x2 , y2) = (x3 , y3) ; where x1 ≠ x2

λ = (y2 – y1)/(x2 – x1)

x3 = λ
2
 – x1 – x2

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 48

y3 = λ(x1 – x3) – y1

The addition of a point to itself (doubling a point) on the elliptic curve is computed as shown below:

(x1 , y1) + (x1 , y1) = (x3 , y3) ; where x1 ≠ 0

λ = (3(x1)
2
 + a) /(2y1)

x3 = λ
2
 – 2x1

y3 = λ(x1 – x3) – y1

We assume that the squaring calculation has the same complexity as multiplication. To add two
different points in GF(p) we need: six additions, one inversion, and three multiplication operations. To
double a point we require: four additions, one inversion, and four multiplication computations. The
GF(p) point operations will be discussed for ECC crypto processors in section 5.

2.2. Encryption and Decryption

There are many ways to apply elliptic curves for encryption/decryption purposes [3]. In its most basic
form, users randomly select a base point (x,y), lying on the elliptic curve E. The plain text (the original
message to be encrypted) is coded into an elliptic curve point (xm,ym). Each user selects a private key
‘n’ and computes his public key P = n(x,y). For example, user A’s private key is nA and his public key
is PA = nA(x,y).

For anyone to encrypt and send the message point (xm,ym) to user A, sender needs to choose a
random integer R and generate the ciphertext: Cm = {R(x, y) , (xm, ym)+ kPA }.
The ciphertext pair of points uses A’s public key, where only user A can decrypt the plain text using
his private key. To decrypt the ciphertext Cm, the first point in the pair of Cm, R(x,y), is multiplied by
A’s private key to get the point: nA (R(x,y)). Then this point is subtracted from the second point of Cm,
the result will be the plain text point (xm,ym). The complete decryption operations are:

((xm,ym)+RPA) - nA(R(x,y))=(xm,ym)+R(nA(x,y))-nA(R(x,y))=(xm,ym)

The most time consuming operation in the encryption and decryption procedure is finding the
multiples of the base point, (x,y). The algorithm used to implement this is discussed in the next
section.

2.3. Point Operation Algorithm

The ECC algorithm used for calculating nP from P is based on the binary representation of n, since it
is known to be efficient and practical to implement in hardware [3, 13]. This method is shown as the
Binary Algorithm:

Binary Algorithm
Define k: number of bits in n and ni: the ith bit of n
Input: P (a point on the elliptic curve).
Output: Q = nP (another point on the elliptic curve).

1. if nk-1 = 1, then Q:=P else Q:=0;
2. for i = k-2 down to 0;
3. { Q := Q +Q ;
4. if ni = 1 then Q:= Q +P ; }
5. return Q;

Basically, the binary algorithm scans the bits of n and doubles the point Q k-times. Whenever, a
particular bit of n is found to be one, an extra computation of point addition (Q+P) is needed. Every
point addition or point doubling operation requires the three modulo GF(p) operations of inversion,
multiplication, and addition/subtraction as presented earlier in Section 2.1.

3. PROJECTIVE COORDINATES

Projective coordinates are used to eliminate the need for performing the lengthy inversion as in the
crypto processors in [12, 15]. For elliptic curve defined over GF(p), two different forms of formulae are
available [3, 24] for point addition and doubling. One form projects (x,y)=(X/Z

2
,Y/Z

3
) [3], while the

second projects (x,y)=(X/Z,Y/Z) [24].

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 49

The two procedures for projective point addition of P+Q (two elliptic curve points) are shown below:

P=(X1,Y1,Z1);Q=(X2,Y2,Z2);P+Q=(X3,Y3,Z3); where P ≠ ±Q

(x,y)=(X/Z2,Y/Z3) ���� (X,Y,Z)

(x,y)=(X/Z,Y/Z) ���� (X,Y,Z)

λ1 = X1Z2
2 2M λ1 = X1Z2 1M

λ2 = X2Z1
2 2M λ2 = X2Z1 1M

λ3 = λ1 - λ2 λ3 = λ2 - λ1

λ4 = Y1Z2
3 2M λ4 = Y1Z2 1M

λ5 = Y2Z1
3 2M λ5 = Y2Z1 1M

λ6 = λ4 - λ5 λ6 = λ5 - λ4

λ7 = λ1 + λ2 λ7 = λ1 + λ2

λ8 = λ4 + λ5 λ8 =λ6
2 Z1Z2-λ3

2λ7 5M

Z3 = Z1Z2λ3 2M Z3 = Z1Z2λ3
3 2M

X3 = λ6
2 - λ7λ3

2 3M X3 = λ8λ3 1M

λ9 = λ7λ3
2 – 2X3 λ9 = λ3

2 X1Z2 - λ8 1M

Y3 = (λ9λ6 - λ8λ3
3
)/2 3M Y3 = λ9λ6 - λ3

3
 Y1Z2 2M

 ----- -----

 16 M 15M

Note that the 16M and 15M represent the total number of multiplication operations (multiplications
count) for each procedure, respectively.

Similarly, the two formulae and their multiplication operation count for projective point doubling are
shown below:

P = (X1,Y1,Z1); P+P = (X3,Y3,Z3)

 (x,y)=(X/Z2, Y/Z3)���� (X,Y,Z) (x, y) = (X/Z, Y/Z) ���� (X,Y,Z)

λ1 = 3X1
2 + aZ1

4 4M λ1 = 3X1
2 + aZ1

2 2M

Z3 = 2Y1Z1 1M λ2 = Y1Z1 1M

λ2 = 4X1 Y1
2 2M λ3 = X1Y1λ2 2M

X3 = λ1
2
 - 2λ2 1M λ4 = λ1

2 - 8λ3 1M

λ3 = 8Y1
4 1M X3 = 2λ4λ2 1M

λ4 = λ2 - 2X3 Y3=λ1(4λ3-λ4)–8(Y1λ2)
2 3M

Y3 = λ1λ4 -λ3 1M Z3 = 8 λ2
3 2M

 ------ -----

 10M 12M

The squaring calculation over GF(p) is considered similar to the multiplication computation. They are
both noted as M (multiplication). Here the time of addition and subtraction are ignored since they are
negligible compared to multiplication [3]. Since the number of projective point additions is taken to be,
on an average, half the number of bits, it can be clearly seen form the above tables that the projective
coordinate (x,y) = (X/Z

2
,Y/Z

3
) has on the average 18 multiplication operations, while the projection

(x,y) = (X/Z,Y/Z) has on the average 19.5 multiplications. Considering the worst case scenario of
having the number of point additions similar to the number of bits, the projective coordinate
(x,y) = (X/Z

2
,Y/Z

3
) has 26 multiplication operations, whereas the projection (x,y) = (X/Z,Y/Z) has 27

multiplications. Clearly, the projective coordinate (x,y) = (X/Z
2
,Y/Z

3
) would be the projection of choice

for sequential implementation, as summarized in Table 1.

Procedure of

Projecting

Average Number of

 Multiplication Cycles

Worst Number of

Multiplication Cycles

(x,y) to (X/Z
2
,Y/Z

3
) 18 26

(x,y) to (X/Z,Y/Z) 19.5 27

TABLE 1: Comparison Between The Different Projective Coordinate Assuming Single Multiplier (Sequential
Implementations)

4. PARALLEL MULTIPLIERS & PREFERRED PROJECTIVE COORDINATES

Our basic motivation in this research is gained by taking advantage of the parallelism that exists in the
ECC and its projective coordinate operations. The two forms of projecting procedures

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 50

(x,y) = (X/Z
2
,Y/Z

3
) and (x,y) = (X/Z,Y/Z) for projective point addition (P+Q) and projective point

doubling (P+P), described in the previous section is studied assuming the flexible possibility of having
multiple parallel multipliers in different forms. In principle, the architectures to be considered can
operate both coordinate systems. The study assumes having different architectures with their
difference in the available number of parallel multipliers they have, as shown in Figure 1. Every
architecture with its certain number of multipliers will study the speed difference due to running the
two projective coordinates computations. This will conclude the efficient choice of projective
coordinate to be adopted for this hardware with this specific number of multipliers. This section will
study the algorithms of both projective coordinates and their best map of data dependency based on
parallel multipliers which, in reality, will affect the controlling unit within the architecture to make it
efficient. Note that the detailed multiplier design will not change the overall hardware design nor the
comparisons results, therefore this level of details are not considered in the focus of this study.

FIGURE 1: General Architecture Showing All Different Designs of This Study
- Based On Its Number of Parallel Multipliers

We found that the architectures does not show speed improvement due to parallelization when higher
number of multipliers are used, i.e. when 5 or more are involved. It is found that both projective
coordinate forms can be parallelized giving improving results to the maximum possibility using four
multipliers. This can be observed from the details of the following subsections.

4.1 Parallelizing Multiplications of the Standard Coordinates

The standard projection of (x,y) = (X/Z,Y/Z) is assumed to be running on the different architectures of
Figure 1. It will be tested differently involving 2, 3, 4, and 5 multipliers processed in parallel. Figures 2
and 3 highlight the dependency within the procedures when two parallel multipliers are considered.
The figures detail the different critical path stages, hence different number of multiplication cycles
needed for the operations. It can observed that the projection (x,y) = (X/Z,Y/Z) needs 8 multiplications
for point addition and 6 for point doubling. Using the common assumption of the number of point
additions to be half the number of bits, we can assume the average number as 4 additions and 6
doubling resulting 10 multiplications. Allowing for the worst case of having the number of point
additions to be equal to number of bits, the projective coordinate will need 14 multiplications.

Consider the architecture of Figure 1 with three multipliers. The standard projection of (x,y)=(X/Z,Y/Z)
is need of 5 multiplications for point adding (Figure 4) and 4 for point doubling (Figure 5). This will
make the worst case number of multiplications as 9, whereas it is 6.5 as average scenario.

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 51

FIGURE 2: Addition Data Flow Diagram For Projection of (X,Y) To (X/Z,Y/Z) Using 2 Parallel Multipliers

FIGURE 3: Doubling Data Flow Diagram For Projection of (X,Y) To (X/Z,Y/Z) Using 2 Parallel Multipliers

FIGURE 4: Addition Data Flow Diagram For Projection of (X,Y) To (X/Z,Y/Z) Using 3 Parallel Multipliers

The standard projection of (x,y) = (X/Z,Y/Z) can operate with 4 multipliers as presented earlier in [26].
This hardware is providing results after 4 multiplication steps for point adding and after 3 steps for

 Y1Z2 X2Z1 X1Z2

λ2 λ1

 Y1 Z2 X2 Z1 X1 Z2

 λ1- λ2 λ1+λ2

λ3

λ4 Y2 Z1 Z2

λ7 λ5

Y2Z1 Z1Z2 (λ3)
2

λ5-λ4

 λ7λ3
2
 λ6

(λ3)
3

λ1λ3
2
 Z1Z2λ6

2

(λ6)
2

Z1Z2λ3
3

Z1Z2λ6
2

 - λ7λ3
2

 λ8 λ1λ3
2 - λ8

λ9λ6

λ9

λ9 λ6 - λ3
3 λ4

λ8λ3 λ4λ3
3

λ4

(λ3)
3

Z3

X3
Y3

Multiplication Steps

----------- 1

----------- 2

----------- 3

----------- 4

----------- 5

X1 3X1 Z1 aZ1

3X1
2 aZ1

2

3X1
2 + aZ1

2
λ2 λ1

Y1

Y1X1λ2 Y1λ2

λ1
2-8λ3

λ3

4λ3-λ4

λ4

8λ2
3 2λ4λ2

λ1 λ5 2λ2

λ5λ1 - 8(Y1λ2)
2

Y3 Z3 X3

Multiplication Steps

----------- 1

----------- 2

----------- 3

----------- 4

----------- 5

----------- 6

Y1X1 Y1Z1

Y1 X1 Y1 Z1

λ2
2 λ1

2

λ5λ1 (Y1λ2)
2

 X2Z1 X1Z2
λ2 λ1

X2 Z1 X1 Z2

λ3

Y2 Z1 Y1 Z2

λ7

λ5

Y2Z1 Y1Z2

λ5-λ4

λ4

 Z2 Z1

Z2Z1 (λ6)
2

λ6

Z2Z1λ6
2 (λ3)

2

λ7λ3
2
 (λ3)

3

λ8

Z1Z2λ6
2

 - λ7λ3
2

 Z2Z1λ3
3 λ8λ3

X3 Z3

λ1λ3
2

 λ1- λ2 λ1+λ2

λ3
2 λ1

λ1λ3
2 - λ8

λ9λ6

λ9

λ9 λ6 - λ3
3 λ4

λ4λ3
3

λ4

(λ3)
3

Y3

Multiplication Steps

----------- 1
----------- 2

----------- 3

----------- 4
----------- 5

----------- 6
----------- 7

----------- 8

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 52

point doubling as in Figures 6, and 7, respectively. This design worst case number of multiplications
steps is 7, while its average is 5 running this projective system.

FIGURE 5: Doubling Data Flow Diagram For Projection of (X,Y) To (X/Z,Y/Z) Using 3 Parallel Multipliers

FIGURE 6: Addition Data Flow Diagram For Projection of (X,Y) To (X/Z,Y/Z) Using 4 Parallel Multipliers

FIGURE 7: Doubling Data Flow Diagram For Projection of (X,Y) To (X/Z,Y/Z) Using 4 Parallel Multipliers

Y1 X1 Y1 Z1 X1 3X1 Z1 aZ1

Y1X1 Y1Z1 3X1
2 aZ1

2

3X1
2 + aZ1

2

λ2

λ1

Y1

Y1X1λ2 Y1λ2 λ2
2 λ1

2

λ1
2-8λ3

λ3

4λ3-λ4

λ4

λ5λ1 (Y1λ2)
2 8λ2

3 2λ4λ2

λ1 λ5

2λ2

λ5λ1 - 8(Y1λ2)
2 Y3 Z3 X3

Multiplication Steps

----------- 1

----------- 2

----------- 3

Y1Z2 Y2Z1 X2Z1 X1Z2

λ2 λ1

Y1 Z2 Y2 Z1 X2 Z1 X1 Z2

λ5-λ4 λ1+λ2 λ1-λ2

λ4 λ5

 λ6 λ3

Z1Z2 λ6
2
 λ3Z2 λ3

2

Z2

Z2
Z1

λ7

λ1λ3
2
 Z1Z2λ6

2 Z2λ3
3
 λ7λ3

2

λ1 λ7

λ8

Y1Z2λ3
3
 λ9λ6 Z1Z2λ3

3
 λ3λ8

λ3

λ6λ9 - λ3
3Y1Z2 Y3 Z3 X3

λ9 λ6

λ3
2X1Z2 -λ8

λ6
2Z1Z2 - λ7λ3

2

Y1
Z1

Multiplication Steps

----------- 1

----------- 2

----------- 3

----------- 4

Y1 Z1 X1 3X1 Z1 aZ1

Y1Z1 3X1
2 aZ1

2

3X1
2 + aZ1

2
λ2

λ1

λ1
2-8λ3

 4λ3-λ4

λ4

λ5λ1 (Y1λ2)
2 2λ4λ2

λ1 λ5

2λ2

λ5λ1 - 8(Y1λ2)
2 Y3 X3

Multiplication Steps

----------- 1

----------- 2

----------- 3

----------- 4

Y1X1λ2 8λ2
3 λ1

2

λ3

Y1 X1

Y1X1 Y1λ2 λ2
2

Z3

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 53

The last architecture study for projecting (x,y) to (X/Z,Y/Z) is assuming processing utilizing 5 parallel
multipliers. As shown in Figure 8, although this hardware is having higher capability of parallelization,
the number of multiplication steps cannot be reduced more, i.e. more than the architecture of 4
multipliers. This made the option of five multipliers not recommended for this coordinate system as
well as the Jacobian system as will be shown in the next subsection.

FIGURE 8: Addition Data Flow Diagram For Projection of (X,Y) To (X/Z,Y/Z) Using 5 Parallel Multipliers

4.2 Parallelizing Multiplications of the Jacobian Coordinates

The other system to be studied for operation on the architectures of Figure 1 is the Jacobian
projective coordinate of (x,y) = (X/Z

2
,Y/Z

3
). When Jacobian procedure is mapped on two multipliers

hardware, the point addition operation is in need of 8 multiplication steps and the point doubling needs
5 steps as in Figures 9 and 10, respectively. The average number of multiplication steps is considered
9 multiplication cycles, assuming the common theory of the number of point additions to be half the
number of bits, as the Binary algorithm of Section 2.3. The longest case possible is when the number
of point additions equal to number of bits making the projective coordinate (x,y) = (X/Z

2
,Y/Z

3
) in need

for 13 multiplication operation steps.

FIGURE 9: Addition Data Flow Diagram For Projection of (X,Y) To (X/Z
2
,Y/Z

3
) Using 2 Parallel Multipliers

Y1Z2 Z2
2

Y2 Z1 Y1 Z2

λ4

λ9λ6

λ5

Y1Z2
3 X1Z2

2

X2

X1

λ4 + λ5 λ4 - λ5 λ1 - λ2 λ1+λ2

λ2

 λ3λ8 λ6
2

 λ8 λ6 λ3 λ7

Z2

 λ3
3λ8 λ7λ3

2

Z1

3λ7λ3
2-2λ6

2 λ6
2-λ7λ3

2

λ9 λ6

(λ9λ6 - λ3
3λ8)/2 Y3 Z3 X3

Multiplication Steps
----------- 1

----------- 2

----------- 3

----------- 4

----------- 5
----------- 6

----------- 7

----------- 8

Y2Z1 Z1
2

Y2Z1
3 X2Z1

2
λ1

λ3Z1Z2

λ3Z2 λ3
2

Z1Z2 Y1Z2 Y2Z1 X2Z1 X1Z2

λ2 λ1

Z1 Z2 Y1 Z2 Y2 Z1 X2 Z1 X1 Z2

λ5-λ4 λ1+λ2 λ1-λ2

λ4 λ5

 λ6 λ3

λ6
2

 λ3Z2 λ3
2

Z2

λ7

λ1λ3
2
 Z1Z2λ6

2 Z2λ3
3
 λ7λ3

2

λ1 λ7

λ8

Y1Z2λ3
3
 λ9λ6 Z1Z2λ3

3
 λ3λ8

λ3

λ6λ9 - λ3
3Y1Z2 Y3 Z3 X3

λ9 λ6

λ3
2X1Z2 -λ8

λ6
2Z1Z2 - λ7λ3

2

Y1
Z1

Multiplication Steps

----------- 1

----------- 2

----------- 3

----------- 4

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 54

FIGURE 10: Doubling Data Flow Diagram For Projection of (X,Y) To (X/Z
2
,Y/Z

3
) Using 2 Parallel Multipliers

The Jocbian projection of (x,y) = (X/Z
2
,Y/Z

3
) operate on the 3 multipliers architecture of Figure 1 as

presented in Figure 11 for point addition and Figure 12 for point doubling. This hardware can provide
outcome after 6 multiplication steps for point adding and after 4 steps for point doubling. This model
worst case number of multiplications steps is 10, while its average is 7 operating this projective
coordinate procedure.

FIGURE 11: Addition Data Flow Diagram For Projection of (X,Y) To (X/Z
2
,Y/Z

3
) Using 3 Parallel Multipliers

Figure 13 and Figure 14 is showing the data flow when running the projective coordinate
(x,y) = (X/Z

2
,Y/Z

3
) on hardware with 4 multipliers as implemented earlier in [26]. On the average, the

design needs 6.5 multiplication cycles. Allowing for the worst case of having the number of point
additions to be equal to number of bits, the projective coordinate (x,y) = (X/Z

2
,Y/Z

3
) need 9

multiplication operations.

Z1
2 Y1Z2 Z2

2

Z1 Y1 Z2

λ4

λ9λ6

Y1Z2
3 X1Z2

2

X2

X1

λ4 + λ5 λ4 - λ5 λ1 - λ2 λ1+λ2

λ2

 λ6
2 λ3Z2 λ3

2

 λ8 λ6 λ3 λ7

Z2

λ3Z1Z2 λ7λ3
2

Z1

3λ7λ3
2-2λ6

2 λ6
2-λ7λ3

2
λ9 λ6

(λ9λ6 - λ3
3λ8)/2 Y3 Z3 X3

Multiplication Steps

----------- 1

----------- 2

----------- 3

----------- 4

----------- 5

----------- 6 λ3
3λ8

 λ3λ8

Y2Z1
3 X2Z1

2

Y2Z1

Y2

λ1

λ5

aZ1 Z1

 aZ1
2 Z1

2

3X1
2+aZ1

4

4X1

Z3 Y3 X3

aZ1
4 Y1

2

2Y1

Z1

λ3

λ1
2

 λ1
2-2λ2

λ2–2X3

λ2

λ4

λ1λ4

λ1

 λ1λ4-λ3

Multiplication Steps

----------- 1

----------- 2

----------- 3

----------- 4

----------- 5

4X1Y1
2

2Y1Z1

 3X1
2 8Y1

4

3X1

X3

X1

Y1

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 55

FIGURE 12: Doubling Data Flow Diagram For Projection of (X,Y) To (X/Z
2
,Y/Z

3
) Using 3 Parallel Multipliers

FIGURE 13: Addition Data Flow Diagram For Projection of (X,Y) To (X/Z
2
,Y/Z

3
) Using 4 Parallel Multipliers

FIGURE 14: Doubling Data Flow Diagram For Projection of (X,Y) To (X/Z
2
,Y/Z

3
) Using 4 Parallel Multipliers

3X1 X1 aZ1 Z1 Y1

 3X1
2 aZ1

2 Z1
2 Y1

2

3X1
2+aZ1

4

4X1

Z3 Y3 X3

2Y1Z1 aZ1
4 8Y1

4 4X1Y1
2

2Y1

 Z1

λ3 λ2

λ1
2

 λ1
2-2λ2

λ2–2X3

λ2

λ4 λ1λ4

λ1

λ3

λ1λ4-λ3

Multiplication Steps

----------- 1

----------- 2

----------- 3

----------- 4

Y2Z1 Z1
2 Y1Z2 Z2

2

Y2 Z1 Y1 Z2

λ4

λ9λ6

λ5 λ1

Y2Z1
3 X2Z1

2 Y1Z2
3 X1Z2

2

X2 X1

λ4 + λ5 λ4 - λ5 λ1 - λ2 λ1+λ2

λ2

 λ3λ8 λ6
2 λ3Z2 λ3

2

 λ8 λ6 λ3 λ7

Z2

 λ3
3λ8 λ3Z1Z2 λ7λ3

2
Z1

3λ7λ3
2-2λ6

2 λ6
2-λ7λ3

2

λ9 λ6

(λ9λ6 - λ3
3λ8)/2 Y3 Z3 X3

Multiplication Steps

----------- 1

----------- 2

----------- 3

----------- 4

----------- 5

aZ1 Z1 Y1

 aZ1
2 Z1

2 Y1
2

3X1
2+aZ1

4

4X1

Z3 Y3 X3

aZ1
4 8Y1

4

2Y1

Z1

λ3

λ1
2

 λ1
2-2λ2

λ2–2X3

λ2

λ4

λ1λ4

λ1

 λ1λ4-λ3

Multiplication Steps

----------- 1

----------- 2

----------- 3

----------- 4

4X1Y1
2

2Y1Z1

 3X1
2

3X1 X1

X3

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 56

Similar to the study of mapping the standard projective coordinates on the architecture of 5 multipliers,
the Jacobian projection of (x,y) to (X/Z

2
,Y/Z

3
) is mapped on 5 parallel multipliers in Figure 15. This

design is ideally having more capability of parallelization, however, the number of multiplication steps
cannot be reduced more, i.e. more than the architecture of 4 multipliers. This is found for both
coordinate systems making the 5 multipliers hardware not recommended.

FIGURE 15: Doubling Data Flow Diagram For Projection of (X,Y) To (X/Z
2
,Y/Z

3
) Using 5 Parallel Multipliers

4.3 Preferred – Efficient- Projective Coordinate

Both projection systems, i.e. Standard and Jacobian, can operate on all architectures of Figure 1.
However, every architecture prefers running a specific projection procedure based on the inherent
parallelism possible in its multiplication processes. This choice leads to differences in the controller,
which maps the operations efficiently as listed in Table 2. Also, the preferred procedures lead to better
utilization of multipliers in that specific hardware as will be described later in this section.

Procedure of
Projecting

Parallel
Multipliers

Number of Multiplication Cycles
Multipliers
Utilization

Preferred
(Efficient)
Projective
Coordinate

Average Worst Average Worst

(x,y) to (X/Z
2
,Y/Z

3
)

1
8+10=18 16+10=26 100% 100% √

(x,y) to (X/Z,Y/Z) 7.5+12=19.5 15+12=27 100% 100%

(x,y) to (X/Z
2
,Y/Z

3
)

2
4+5=9 8+5=13 100% 100% √

(x,y) to (X/Z,Y/Z) 4+6=10 8+6=14 98% 96%

(x,y) to (X/Z
2
,Y/Z

3
)

3
3+4=7 6+4=10 86% 87%

(x,y) to (X/Z,Y/Z) 2.5+4=6.5 5+4=9 100% 100% √

(x,y) to (X/Z
2
,Y/Z

3
)

4
2.5+4=6.5 5+4=9 69% 72%

(x,y) to (X/Z,Y/Z) 2+3=5 4+3=7 100% 100% √

(x,y) to (X/Z
2
,Y/Z

3
)

5
2.5+4=6.5 5+4=9 55% 58%

(x,y) to (X/Z,Y/Z) 2+3=5 4+3=7 80% 80% √

TABLE 2: Preferred - Efficient - Projective Coordinates and Utilization
According to Number of Parallel Multipliers

It is found that the Jacobian projection (x,y) = (X/Z
2
,Y/Z

3
) leads to less number of multiplication steps

for one and two multipliers hardware, as in Table 2. It is to be noted that this projection mapping is
providing 100% utilization of the multipliers, which is the efficient hardware usage.

When the number of multipliers exceeds 2, i.e. 3 and 4, the standard projection of (x,y) = (X/Z,Y/Z)
gives less number of parallel multiplication steps, which would be the projection of choice for our

2Y1 Z1 3X1 X1 aZ1 Z1 Y1

3X1
2+aZ1

4

4X1

Z3 Y3 X3

aZ1
4 8Y1

4 4X1Y1
2

λ2

λ1
2

 λ1
2-2λ2

λ2–2X3

λ4 λ1λ4

λ1

λ3

λ1λ4-λ3

Multiplication Steps

----------- 1

----------- 2

----------- 3

----------- 4

2Y1Z1 3X1
2 aZ1

2 Z1
2 Y1

2

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 57

implementation. Also, this system is utilizing is 100% hardware, using the four multipliers in all
multiplication cycles, as brifed in Table 2, which is not the case of the projection (x,y) = (X/Z

2
,Y/Z

3
).

If the design is made of 5 multipliers, the speed will not change than the 4 multipliers preferring the
standard projection system. Interestingly, it also shows hardware utilization of 80%, which is better
than the Jacobian coordinate system that is showing 50% ~ 58% utilization. This made the decision to
avoid the 5 multiplier architecture from making it as an option of choice for both Standard and
Jacobian coordinate systems.

5. ARCHITECTURES AND EFFICIENCY DECISIONS

Several cryptographic architectures have been proposed in the literature [11, 12, 15, 18]. The
conventional approach used in the design of these processors is to adopt serial computations at both
the algorithmic level by using a single multiplier, as well as at the arithmetic level by using a serial
multiplier. The reason for serial multiplier and sequential operation is that they lead to the lowest area
for large word lengths, which is needed for secure encryption (i.e. > 160 bits [3]). The above approach
reduces area at the expense of speed. The new architectures study proposed in this paper have multi
parallel multipliers, an adder, registers and a controller. The design is a straightforward
implementation of the dependency graphs (Section 4) based on the number of multipliers needed and
the efficient projective coordinate selected. The designs controller is constructed of a finite state
machine to direct the flow of data to conduct the required projective point operation depending on the
binary algorithm described previously in Section 3. This section will also consider the comparison
between these architecture with respect to their cost in relation to the area and speed (time). The time
will be factor of the number of bits to be computed as needed by the crypto application. The
improvement in our crypto-processor is focusing on the parallelism described in Section 4 and not on
the basic GF(p) multiplier and adder, nor hardware details.

To mention briefly about the suggested multipliers, the designs proposed in [14, 15] use multiplier
hardware that is fixed to number of bits they are intended for, if the number of bits are needed to be
increased for some crypto application, the complete processor is to be replaced. Furthermore, if the
number of bits is much less than the intention of the hardware design, the unnecessary bits will be
considered as zeros but included in the computation, causing the same delay exactly as if all bits are
essential. These weaknesses motivated the recommendation to choose adopting special scalable
multipliers instead of conventional as detailed in the design in [26].

In this study, the number of multipliers is used as the area factor as an assumption for comparison
reasons and the timing will assume 160, 256 and 512 bits for crypto calculations, which are the
common number of bits needed by most applications [28, 29, 31]. The area factor and timing average
estimate will be multiplied together to generate different cost figures. These cost figures are just

simple figure of merit values to be used for evaluation reasons. For example, the cost AT (AT = A×T),
assumes that time and area is having similar balanced importance to the application. When timing is
more important, the cost figure of merit AT is assumed to be further multiplied by time T making it ATT

(ATT = A×T×T). These studies are similar to the cost studies provided in [26]. On similar concept but
with allowing for the application to have more importance to area than time, we included in this study
the cost AAT, where the area is squared multiplied by the timing once. This new AAT cost is believed
to be needed for applications with very limited hardware area such as smart cards and small mobile
devices, where area is more important than speed.

Considering the different architectures with different number of multipliers as described in section 4.3
before, we start our focus on the design of two multipliers. It prefers the Jacobian coordinates to form
its controller hardware, as shown in Figure 16. The average timing of the process is in need of 9
cycles per bit making the total timing estimation for 160 bits crypto computations as T = 1,440 cycles.
Assuming the area factor is A = 2 multipliers, the cost: AT = 2,880; the cost ATT = 4,147,200; and the
cost AAT = 5,760. Again, to be explicit, these cost (figure of merit) results does not have a direct
meaning in its value except to compare the different designs efficiency and help making proper
decision. Similarly, the timing of running this hardware on 256 bits is T = 2,304 cycle. The costs will
be: AT = 4,608; ATT = 10,616,832; and AAT = 9,216. The costs of this hardware computing 512 bits
are AT = 9,216; ATT = 42,467,328; and AAT = 18,432.

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 58

When the architecture is having three or four multipliers, the preferred controller state machine should
run the standard projective coordinates, as mentioned in Table 2 earlier. The hardware with three

multipliers (Figure 17) runs 160 bits crypto applications with average estimated timing T = 160 × 6.5 =

1,040 cycles. This hardware cost AT = 3 × 1040 = 3,120; ATT = 3,244,800 and AAT = 9,360. The

timing when running 256 bits will be changed to T = 256 × 6.5 = 1,664 cycles. The cost is changed to

AT = 3 × 1664 = 4,992; ATT = 3 × 1664 × 1664 = 8,306,688; and AAT = 14,976. The costs values of
this hardware when used for 512 bits computation adjusted to AT = 9,984; ATT = 33,226,752; and
AAT = 29,952.

FIGURE 16: Elliptic Curve Processor Architecture Using 2 Multipliers

FIGURE 17: Elliptic Curve Processor Architecture Using 3 Multipliers

The four multipliers architecture running standard projective coordinate system, as Figure 18, needs 5
cycles per bit (on average estimate timing). When the total bits to be processed is 160, the timing

shows T = 160 × 5 = 800 cycles. The area factor A = 4, making the cost AT = 3,200; ATT = 2,560,000;

and AAT = 12,800. If the number of bits is 256, the timing is modified to T = 256 × 5 = 1,280; the cost
will be AT = 5,120; ATT = 6,553,600; and AAT = 20,480. For 512 bits computations, the costs are
found to be AT = 10,240; ATT = 26,214,400; and AAT = 40,960.

FIGURE 18: Elliptic Curve Processor Architecture Using 4 Multipliers

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 59

To complete the study, the cost is also computed for the architecture with five multipliers although it is

already estimated as inefficient design (Section 4.3). The timing for 160 bits is found T = 160 × 5 =

800 cycles, similar to the four multiplier hardware. However, the cost AT = 5 × 800 = 4,000; ATT = 5 ×

800 × 800 = 3,200,000; and AAT = 20,000. For the 256 bits, the timing T = 256 × 5 = 1,280 cycles.

The cost will be AT = 5 × 1280 = 6,400; ATT = 5 × 1280 × 1280 = 8,192,000; and AAT = 32,000. If
512 bits are running on this hardware, the cost evaluation values are AT = 12,800; ATT = 32,768,000;
and AAT = 64,000. To summarize this area time parameters effect for the different architectures, all
cost values are listed in Table 3.

Number of

Multipliers (A)
1 2 3 4 5

Avg. Timing

per Bit
18 9 6.5 5 5

Crypto

Applications

Bits = 160

Total Time

Number of

Cycles (T)

2880 1440 1040 800 800

Cost (AT) 2880 2880 3120 3200 4000

Cost (ATT) 8294400 4147200 3244800 2560000 3200000

Cost (AAT) 2880 5760 9360 12800 20000

Crypto

Applications

Bits = 256

Total Time

Number of

Cycles (T)

4608 2304 1664 1280 1280

Cost (AT) 4608 4608 4992 5120 6400

Cost (ATT) 21233664 10616832 8306688 6553600 8192000

Cost (AAT) 4608 9216 14976 20480 32000

Crypto

Applications

Bits = 512

Total Time

Number of

Cycles (T)

9216 4608 3328 2560 2560

Cost (AT) 9216 9216 9984 10240 12800

Cost (ATT) 84934656 42467328 33226752 26214400 32768000

Cost (AAT) 9216 18432 29952 40960 64000

TABLE 3: Summary of Cost for the Different Architectures

Considering the different costs of all architectures makes the decision to choose specific hardware
more efficient. For example, if the hardware area and speed are having the same level of significance,
Figure 19 shows that the architectures of one or two multipliers can both give similar costs. This case
is verified for all different number of bits used.

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 60

FIGURE 19: AT Cost Comparison of Preferred Architectures

When the hardware area is less important than the speed, Figure 20 makes the selection for four
multipliers design. This is valid for all number of bits; in fact, it can be seen more clearly as the
number increase to 512 bits.

FIGURE 20: ATT Cost Comparison of Preferred Architectures

Interestingly, the choice of 4 multiplier hardware is also applicable when the crypto hardware is
assuming importance of area more than speed, as case shown in Figure 21. This indicates that
whenever time and speed are not having the same importance, four multipliers hardware running
standard projective coordinates will be the efficient architecture to use.

FIGURE 21: AAT Cost Comparison of Preferred Architectures

6. CONCLUSION

This paper presented a modeling investigation for efficient architectures used in elliptic curve
cryptography (ECC) computations. We present different architectural study of designs having two,
three, four and five multipliers operating in parallel. The original idea is based on the utilization of the

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 61

inherited parallelism of multiplication steps in the procedures adopted. The work assumes that the
ECC inverse operations are converted into consecutive multiplication steps through projective
coordinates where two well known forms of procedures for projective coordinates are considered, i.e
Jacobian and standard projective coordinates. Comparing the two projective forms running on a single
multiplier hardware shows that projecting (x,y) to (X/Z

2
,Y/Z

3
) (Jacobian coordinates) requires less

number of multiplications than projecting into (X/Z,Y/Z) (standard coordinates). Standard projection
uses one less multiplication operation in adding two different elliptic points, however, it uses two more
multiplication operations in doubling an elliptic point. This made the normal choice for sequential
implementation, i.e. using a single multiplier, that projecting (x,y) into (X/Z

2
,Y/Z

3
) has always been the

candidate of choice for implementing ECC since it has the minimum number of multiplication
operations.

Although the proposed architectures can handle the algorithmic procedures of both projective
coordinate forms, the analysis of the critical paths of both projective coordinates indicates that for
parallel multipliers hardware, projecting (x,y) to (X/Z,Y/Z) requires less number of cycles (faster
hardware) and better utilization than projecting (x,y) to (X/Z

2
,Y/Z

3
) whenever the number of multipliers

are more than two, which gives the choice for performance boost up.

The presented work also involved a cost comparison that refers to the application main concentration.
This cost study is formed by relating between the area and speed for every architecture. The analysis
proven the efficiency of designs involving one or two multipliers when both area and speed factors are
having similar importance to the application. However, this study recommended the preference of
hardware with 4 multipliers whenever the application is having area or speed (one of the cost factors)
as more important. The attraction of this work is that using the proposed architecture with projections
of (x,y) to (X/Z,Y/Z) is leading to the best performance, utilizing the maximum inherited parallelism of
the projective coordinate arithmetic.

Furthermore, this work can be a seed for software implementations of the same ECC system on
currently available multi-core general purpose processors (multi-core processors). Most of this study
can be tuned for parallel programming assuming every multiplier is in a different core in the processor.
The program to be written need to consider this issue from early ahead to help the compilers in their
parallelization tasks. The number of cores to be used can take into consideration the different
software programs running simultaneously, which can also be dynamically changing based on the
application need.

ACKNOWLEDGMENTS

The author would like to thank Umm Al-Qura University and King Fahd University of Petroleum and
Minerals for their unlimited support for all research work.

REFERENCES

[1] V. S. Miller, “Use of Elliptic Curves in Cryptography”, Proceedings of Advances in Cryptology
(Crypto), (1986), p. 417–426.

[2] N. Koblitz, “Elliptic Curve Cryptosystems”, Math. Computing, 48 (1987), p. 203–209.

[3] Blake, Seroussi, and Smart, Elliptic Curves in Cryptography, Cambridge University Press: New
York, 1999.

[4] G. V. S. Raju, R. Akbani, “Elliptic Curve Cryptosystem and its Applications”, IEEE International
Conference on Systems, Man and Cybernetics, 2 (2003), p.1540 – 1543.

[5] Paar, Fleischmann, and Soria-Rodriguez, “Fast Arithmetic for Public-Key Algorithms in Galois
Fields with Composite Exponents”, IEEE Transactions on Computers, 48:10 (1999).

[6] R. L. Rivest, A. Shamir, and L. Adleman, “A Method for Obtaining Digital Signatures and Public-
key Cryptosystems”, Communications of the ACM, 21:2 (1978), p. 120–126.

[7] IEEE P1363, http://grouper.ieee.org/groups/1363

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 62

[8] The ATM Forum, http://www.atmforum.com/meetings/rich_bios. html

[9] The Internet Engineering Task Force, http://www.ietf.cnri.reston.va.us

[10] Chung, Sim, Lee, “Fast Implementation of Elliptic Curve Defined over GF(p
m

) on CalmRISC with
MAC2424 Coprocessor”, Workshop on Cryptographic Hardware and Embedded Systems
(CHES), (2000).

[11] Okada, Torii, Itoh, Takenaka, “Implementation of Elliptic Curve Cryptographic Coprocessor over
GF(2

m
) on an FPGA”, Workshop on Cryptographic Hardware and Embedded Systems (CHES),

(2000).

[12] Orlando and Paar, “A High-Performance Reconfigurable Elliptic Curve Processor for GF(2
m
)”,

Workshop on Cryptographic Hardware and Embedded Systems (CHES), (2000).

[13] Hankerson, Hernandez, and Menezes, “Software Implementation of Elliptic Curve Cryptography
Over Binary Fields”, Workshop on Cryptographic Hardware and Embedded Systems (CHES),
(2000).

[14] G. A. Orton and others, “VLSI implementation of public-key encryption algorithms”, Advances in
Cryptology (CRYPTO), 263 (1986), p. 277-301.

[15] Orlando and Paar, “A scalable GF(p) elliptic curve processor architecture for programmable
hardware”, Cryptographic Hardware and Embedded Systems (CHES), (2001).

[16] Royo, Moran, and Lopez, “Design and implementation of a coprocessor for cryptography
applications”, European Design and Test Conference Proceedings, (1997), p. 213–217.

[17] Agnew, Mullin, and Vanstone, “An Implementation of Elliptic Curve Cryptosystems Over F2
155

”,
IEEE Journal on Selected Areas in Communications, 11:5 (1993), p. 804–813.

[18] Sıddıka Berna Ors and others, “Hardware Implementation of an Elliptic Curve Processor over
GF(p)”, Proceedings of the IEEE International Conference on Application-Specific Systems,
Architectures, and Processors (ASAP), (2003), p. 433 – 443.

[19] G.B. Agnew, R.C. Mullin, and S.A.Vanstone, “An implementation of elliptic curve cryptosystems
over F2155”, IEEE Journal on Selected Areas in Communications, 11:5 (1993), p.804-813.

[20] Chi Huang, Jimnei Lai, Junyan Ren, and Qianling Zhang, “Scalable Elliptic Curve Encryption
Processor for Portable Application”, Proceedings of the 5

th
 International Conference on ASIC, 2

(2003), p. 1312-1316.

[21] J. R. Michener and S. D., “Mohan, Internet Watch: Clothing the E-Emperor, Computer –
Innovative Technology for Computer Professionals”, IEEE Computer Society, 34:9 (2001), p.
116-118.

[22] Adnan Abdul-Aziz Gutub, A. F. Tenca, and C. K. Koc, “Scalable VLSI architecture for GF(p)
Montgomery modular inverse computation”, IEEE Computer Society Annual Symposium on
VLSI, (2002), p. 53-58.

[23] A. F. Tenca and C. K. Koc, “A Scalable Architecture for Modular Multiplication Based on
Montgomery's Algorithm”, IEEE Transactions on Computers, 52:9 (2003), p. 1215-1221.

[24] A. Miyaji, “Elliptic Curves over FP Suitable for Cryptosystems”, Advances in cryptology-
AUSCRUPT’92, Australia, (1992).

[25] Mentor Graphics Co., http://www.mentor.
com/partners/hep/AsicDesignKit/dsheet/ami05databook.html, ASIC Design Kit.

[26] Adnan Gutub, “Efficient Utilization of Scalable Multipliers in Parallel to Compute GF(p) Elliptic
Curve Cryptographic Operations”, Kuwait Journal of Science & Engineering (KJSE), Vol . 34,
No. 2, Pages: 165-182, December 2007.

[27] Daniel J. Bernstein1 and Tanja Lange, ”Faster Addition and Doubling On Elliptic Curves,”
Springer Berlin /Heidelberg, Supported in Part by The European Commission Through The 1

st

Programme, Vol. 4833/2008, November 05, 2007.

[28] Adnan Gutub, Mohammad Ibrahim, and Turki Al-Somani, “Parallelizing GF(P) Elliptic Curve
Cryptography Computations for Security and Speed”, IEEE International Symposium on Signal
Processing and its Applications in conjunction with the International Conference on Information

Adnan Abdul-Aziz Gutub

International Journal of Security (IJS), Volume (4) : Issue (4) 63

Sciences, Signal Processing and their Applications (ISSPA), Sharjah, United Arab Emirates,
February 12-15,2007.

[29] Adnan Gutub, “Fast 160-Bits GF(p) Elliptic Curve Crypto Hardware of High-Radix Scalable
Multipliers”, International Arab Journal of Information Technology (IAJIT), Vol. 3, No. 4, Pages:
342-349, October 2006.

[30] L. Tawalbeh and A. Tenca, “An Algorithm and Hardware Architecture for Integrated Modular
Division and Multiplication in GF(P) and GF(2

N
),” IEEE International Conference on Application-

Specific Systems, April 2004.

[31] L. Tawalbeh, “A Novel Unified Algorithm And Hardware Architecture for Integrated Modular
Division and Multiplication in GF(P) and GF(2

N
) Suitable for Public-Key Cryptography”, Ph.D.

Thesis, School of Electrical Engineering and Computer Science, Oregon State University,
October 28, 2004.

