
Srivatsan Iyer & Tejas Arackal

International Journal of Security (IJS), Volume (8) : Issue (4) : 2014 37

Multi-part Dynamic Key Generation For Secure Data Encryption

Srivatsan Iyer srivatsan.iyer.1990@gmail.com
Software Engineer
Webshar LLC
Mulund, 400080, India

Tejas Arackal tjeidolon@gmail.com
Software Engineer
TCS TataCapital
Andheri Seepz, 400096, India

Abstract

Storage of user or application-generated user-specific private, confidential data on a third party
storage provider comes with its own set of challenges. Although such data is usually encrypted
while in transit, securely storing such data at rest presents unique security challenges. The first
challenge is the generation of encryption keys to implement the desired threat containment. The
second challenge is secure storage and management of these keys. This can be accomplished in
several ways. A naive approach can be to trust the boundaries of a secure network and store the
keys within these bounds in plain text. A more sophisticated method can be devised to calculate
or infer the encryption key without explicitly storing it. This paper focuses on the latter approach.
Additionally, the paper also describes the implementation of a system that in addition to exposing
a set of REST APIs for secure CRUD operations also provides a means for sharing the data
among specific users.

Keywords: Encryption, Dynamic Key Generation, Data At Rest Security, CRUD.

1. INTRODUCTION

Multiple international regulations[1], as well as expectations of users require that any system that
stores private user-identifiable data take appropriate steps to ensure its privacy, security and
integrity. Over and above these primary goals, are the requirements for the system to have very
reliable and readily available storage[2]. Many applications, for reasons of business requirements,
including ease of use, system robustness and data recovery choose to store data with third-party
storage providers.

In typical cases such as above, the choice is between: a) Trust and allow the storage provider to
encrypt the data before writing it out to the disk, or b) proactively encrypt the data prior to sending
it over the wire. The prior option is very easy, and straightforward. If the storage provider does not
encrypt data appropriately, the security of the data is at risk. The risk is multiplied when all the
files are encrypted with the same key. The latter option, however, may be more secure especially
since it gives the control of encryption to the application shepherding the data, or to the owner of
the data itself.

This paper deals with the second option and tries to explore some of the many possibilities that
come with it. As mentioned before, if the encryption is done at the premises, a mechanism is
required to store the encryption key for the object being encrypted. If the key is lost, then the
encrypted object might never get decrypted. It logically follows that management of the keys
needs to be secure as well. In other words, the keys need to get the same treatment with respect
to security as the original unencrypted objects. A very simple, unsophisticated approach would be
to simply have an encryption key for the entire application, and all the data that it wants to store,

Srivatsan Iyer & Tejas Arackal

International Journal of Security (IJS), Volume (8) : Issue (4) : 2014 38

would be encrypted with this key. But this simplicity comes at the cost of security. If this key is
compromised, then the entire data set is at risk.

This problem can be solved by assigning an encryption key per user, and storing it in the data
store. This scheme is safer as compared to the previous one, because if a key is compromised
only the files specific to that user are leaked; the remainder files are safe. Damages/leaks of this
kind cannot be prevented fully. As the power of the hardware grows, it only becomes easier for
attackers to orchestrate different kinds of attacks. This paper explores a very specific method to
contain damages of these kinds.

This paper provides a brief overview of the architecture and framework of a system that can serve
as a middleware between the application server and the storage layer. The benefit of such a
system is that it can connect to existing data store to authenticate users and gives them access
only to authorized resources.

2. LITERATURE SURVEY
The security of the storage in large scale applications has been a constant concern for a long
time. Varied security models have been proposed considering the concerns of web business
applications. Some common security factors such as encryption, access control, fault tolerance
and high availability have been addressed in multi disparate view. While security models with
trusted platform module implement a secure hardware location for encryption, authentication and
attestation there are also some open source cloud computing applications that have their own
implementation of security model.

The TCG trusted platform module (TPM)[3] implementation, using micro controller to store
passwords, certificates & encryption keys, ensures security in terms of hardware-based
cryptography, and hardware based approach to manage user authentication, network access and
data protection. The confidentiality of the data is thus maintained by making it hard for the
attacker to access information on computing device. The TPM is also considered a secure vault
for storing keys, certificates and passwords. The module, by routinely inspecting the hardware
status of the machines, is able to assert that hardware has not been tampered with. In one of the
implementations of the specification, the authors of the paper maintain that storing the artifacts
within the hardware is better than providing a software based security[4]. This approach will
require changes to be implemented in the storage systems hardware in order to support TPM. As
such there is a need for an approach that is much more portable and easily deployable than any
TPM implementation.

OpenStack, an open source cloud computing software, uses an object storage system Swift[5],
comprising of security model for encryption, authorization, access control and key management.
The system provides different locations for the encrypted data and the encrypted keys associated
with encryption. It maintains a master key for encrypting all other keys thus forming a two level
encryption hierarchy. Additionally no implicit mapping is maintained between the data and the
keys. The Openstack security model has its data encrypted and stored separately from the key
that was used to encrypt it. For high-value data, OpenStack supports “dual-locking” in which
every object is encrypted with a combination of “service key” and user-specific key[6]. Although
this is secure, it can be improved by rotating keys among various files of the user so that if a key
combination is somehow leaked only one file is affected.

OwnCloud, an open source project with similar core functionalities, is a “file-hosting” application
that provides a web UI as well as APIs for desktop clients[7]. The system by default uses the
server’s file system for storing incoming data, and can be configured to use different storage
backend. Similarly, for user management it can be configured to work with many relational
database servers. All the files being stored are encrypted with the password of the user. This has
several implications. Firstly, since the application needs to encrypt and decrypt the data using
clear text password, it should be able to retrieve the clear text password. This implies that the

Srivatsan Iyer & Tejas Arackal

International Journal of Security (IJS), Volume (8) : Issue (4) : 2014 39

passwords are not hashed. Secondly, since the user’s login password and the data encryption
key are identical, losing the password is equivalent to losing all the data. Thirdly, since all these
passwords must be stored in the database, it becomes a high-risk component. If somehow the
database gets compromised, data of all the users will be jeopardized.

As such there is a need for an approach that is much more portable & easily deployable than
TPM implementation at the same time it should not store the direct key used for encryption either
in encrypted or decrypted format within the system.

3. PROPOSED SYSTEM
To avoid the shortcomings of present security models, a model with additional improvements
needs to implemented. The guidelines for this system are: a) using the same encryption key for
multiple files increases the extent of damage if any key is compromised; b) for maximum security,
system needs to use different keys for different files c) The key should be constructed by
retrieving information from multiple sources. d) The system should let only authorized users
access the data. The proposed design caters to all of the above requirements.

The solution that this paper proposes is named “Secure Data Storage Manager” (SDSM). SDSM
is an application that operates from within an HTTP Web server placed in a secure network. It
uses a User Data Store for storing various attributes of a user and a Metadata store (a NoSQL
datastore) for storing metadata of the files stored in the storage layer. Both User Data Store and
Metadata Store share the same secure network The two main functions of SDSM is to keep the
information consistent between the metadata store and the storage layer, and to employ an
appropriate encryption and decryption algorithm to deal with user data.

FIGURE 1: Proposed system architecture.

Srivatsan Iyer & Tejas Arackal

International Journal of Security (IJS), Volume (8) : Issue (4) : 2014 40

3.1 Metadata Store
The metadata store is essentially a key-value store, in which the keys are full file path on the
storage layer. The value stored against each key is a complex structure that contains the
following:

1. Timestamp of file creation and timestamp of last modification to the file.
2. Owner information
3. Hash of the file content
4. Access log list

Every file stored in the storage layer has a corresponding entry in the metadata store. The look-
up key in this design is the full file path itself.

3.2 Encryption/Decryption
3.2.1 Preliminaries
Let’s assume a mathematical function ‘f’ to encrypt, and ‘g’ to decrypt. Further assuming the
cipher text to be represented by ‘C’ and original message to be represented by ‘M’, then the usual
encryption/decryption process can be mathematically represented as:

C ≡ fx(M),

M ≡ gx(C),

M ≡ gx(fx(M)),

where, fx and gx are the encryption and decryption functions respectively, each initialised with the
key ‘x’.

Let’s denote the metadata store by the letter ‘S’, the file path in consideration by letter ‘P’, the
master key by letter ‘K’, function to retrieve the metadata structure against a file path by letter ‘h’.
Note that metadata value ‘V’ is encrypted with the master key. Now,

h(S, P) -> { V if P exists, else null }.

Let there be a function ‘j’ that reads decrypted metadata structure to retrieve the last update
timestamp ‘T’ for the file. Assuming ‘V’ exists, mathematically,

j(gK(V)) -> T.

The encrypted private key of the user who owns the file is represented by ‘Q’.

3.2.2 Encryption
Before encryption we update the metadata store for the access being made, specifically, there is
an entry appended the access logs with mode as write. In other words, the function j(..), returns
the current timestamp.

To generate the encryption key ‘R1’ for the file at P1, we need to take the following steps:

h(S, P1) -> V1 ,

j(gk(V1)) ->T1 ,

sha-256(string(T1) + gK(Q1)) -> R,

Srivatsan Iyer & Tejas Arackal

International Journal of Security (IJS), Volume (8) : Issue (4) : 2014 41

where ‘+’ operator stands for concatenation of strings.

The final ciphertext for the original message M1 will be generated as:

fR1 (M1) -> C1.

The above encrypted payload will be uploaded to the storage layer

3.2.3 Decryption
To generate the symmetric decryption key ‘S1’ for the file at P1, we need to take the following
steps:

h(S, P1) -> V1

j(gk(V1)) -> T1

sha-256(string(T1) + gK(Q1)) -> R1

The original message M1 will be recreated from the ciphertext C1 (read from the storage layer) as:

gR1(C1) -> M1.

4. DESIGN

Secure Data Storage Manager System will consist of a web application server, a User Data Store
(UDS), a Metadata Store (MS), a Temporary Credential Store (TCS) and a storage layer. The
system expects only an interface to each of the sub systems. This allows the modules to be
swapped out for a better alternative. Additionally, the application will benefit from not only
flexibility, but also reliability because such systems are built purely for a singular purpose.

The SDSM will essentially be a set of REST API endpoints that clients can connect to. The user
data, including the private keys of the users are securely stored within the UDS such as LDAP[8]
for example. The credentials from the UDS are used for user authentication. Once authenticated,
file metadata is retrieved from MS, for retrieving information related to the current request. The
core of the SDSM is the set of procedures that operate upon the credentials and information
retrieved from User Data store and metadata store respectively, to generate a symmetric key that
will be used for encryption and decryption.

4.1 User Datastore Design
Every user account that is linked with our system will have a unique entry in the User Data Store
(UDS). Each time a user tries to log into our system, authentication will be performed against
UDS. Apart from general user information, every entry contains the hashed password, the secret
key, and the user GUID. The password is used for authentication, while the secret key, which is
generated when the user is onboarded, is used for encryption. It is assumed that this secret key
is communicated to the end user via a different channel. The secret key and the hashed
password are encrypted with the Master Encryption Key (MEK) of the system.

4.2 Temporary Credential Store Design
When a user authenticates with the system, the system will generate a temporary credential for
use by clients in further requests. The schema for it is shown in the image below.

Srivatsan Iyer & Tejas Arackal

International Journal of Security (IJS), Volume (8) : Issue (4) : 2014 42

FIGURE 2: Temporary Credential Record Structure.

The key represents the user GUID and the value is a randomly generated string encoded in
Base64 format when the user is successfully authenticated. The SDSM system can make use of
the expiry feature typically provided by most NoSQL databases. The expiration of temporary
credential implies that the requesting user will have to re-authenticate upon expiry of five minutes.
This design of temporary credential reduces the use of passwords in requests.

4.3 Metadata Record Design
The preferred design to store the metadata entries is a simple key value store instead of a
relation database. Every file stored in SDSM has a record in the Key-Value datastore. Multiple
metadata attributes are associated with the file such as filename, path of file in the storage layer,
creation time, owner information, file sharing information, access logs. The benefit of the key
value store is that all the information that relates to a file is stored in a precise structure at one
place. SDSM will seldom need to operate across multiple files. Also, the flexible schema allows
the access logs as well as sharing information to be contained within the structure itself.

Like the user data store, all the values in the metadata store are encrypted with the MEK of the
system. A typical decrypted record looks like below:

FIGURE 3: File Metadata Record Structure.

4.4 Interaction and Algorithm Design
The SDSM will support 3 categories of HTTPS requests -- a) Request to authenticate and
generate a temporary credential, b) Request to perform CRUD operation on the files, c) Request
to modify sharing and permission information.

The section below explains a set of algorithms to be followed for authentication and read/write
operations. Other operations can be designed similar to the ones described below.

Srivatsan Iyer & Tejas Arackal

International Journal of Security (IJS), Volume (8) : Issue (4) : 2014 43

4.4.1 Generate Temporary Credential Request
The client will authenticate using an HTTPS POST request to the SDSM with the following
parameters:

1. User GUID
2. Hashed Password

The server side will perform the following operation to authenticate the user and generate
temporary credential for the user account.

1. Retrieve the GUID and hashed password from the request.
2. Retrieve values from LDAP. Decrypt the hashed password using MEK and proceed to

authenticating the user
3. If request passes authentication, proceed with creation of temporary credential, else

throw an error.
4. To generate the temporary credential SDSM will generate a secure random string and

encode using Base64 to form temporary credential. This will be returned to the client.
5. SDSM will then create an entry into the Temporary Credential Store with Key as user

GUID, temporary credential encrypted with MEK as value. This entry auto-expires after
300 seconds.

4.4.2 Create Secure Item Request
The client will send an HTTPS PUT request to the SDSM with the following parameters:

1. User GUID
2. Temporary credentials
3. File Content(FC)
4. File Path (with filename, relative to user’s home directory)

The server side will perform the following operation in response to the request.

1. Retrieve the temporary credential from the requests, and validate it by looking up the

user GUID in the Temporary Credential Store. Use MEK to decrypt the value in the
Temporary Credential Store.

2. Retrieve the file content from the request.
3. Retrieve the secret key from the LDAP using the GUID. Decrypt it using MEK.
4. Concatenate the file content with the user’s secret key and the timestamp provided within

the request. Generate a SHA-256 hash.
5. Validate the hash for both the supplied and the server generated hash. If not valid throw

an error.
6. CleanPath <- Sanitise-input-path(PathFromHTTPRequest)
7. FilePath <- “/” + <User GUID> + “/” + CleanPath
8. Ensure there is not entry against FilePath. Signal error otherwise.
9. Create a new record within the metadata store, with the following attributes, without

committing to the store:
a) Key <- FilePath
b) Current user as the owner.
c) Current timestamp for created and last modified
d) SHA 256 Hash of the file content
e) Shared with None
f) Access Logs <- [{"user": "<current user>","access_type": "create","timestamp":

"<time>"}]
10. Encrypt the incoming file

a) Encryption key <- SHA-256 (<owner’s secret key> + <last timestamp of last
update/create from access logs>)

b) Encrypt the incoming file with the above password.

Srivatsan Iyer & Tejas Arackal

International Journal of Security (IJS), Volume (8) : Issue (4) : 2014 44

11. Proceed to uploading the encrypted file to the Storage Layer
a) File Name: Substring after the last slash.
b) File Path: FilePath (from point 6)

12. Upon success, encrypt the new record using Master key, commit to metadata store and
signal success. Else, rollback and signal error.

4.4.3 Read Secure Item Request
The client will send an HTTP GET request to the SDSM with the following parameters:

1. User GUID
2. Owner GUID
3. Temporary credentials
4. File Path (with filename, relative to owner-user’s home directory)

In response to the request above, the server will perform the following actions:

1. Retrieve the temporary credential from the requests, and validate it by looking up the

user GUID in the Temporary Credential Store. Use MEK to decrypt the value in the
Temporary Credential Store.

2. CleanPath <- Sanitise-input-path(PathFromHTTPRequest)
3. FilePath <- “/” + <Owner GUID> + “/” + CleanPath
4. Check if FilePath exists in the metadata store. If not, error.
5. if User GUID != Owner GUID:

a) Look into “shared_with” key. Read the array, and search for the element with
“user” equal to the current user GUID. If none exist, signal item not found.

b) If an item is found, check if “read” is a substring in “mode”. If not, signal item not
available for requested action.

6. Append to access_logs: {"user": "<guid>","access_type": "read","timestamp": "<time>"},
7. Fetch Owner’s secret key from LDAP. Decrypt it using MEK.
8. Fetch the last update/create timestamp from the access_log
9. Key <- SHA-256(<owner’s secret key> + <last timestamp of last update/create from

access logs>)
10. From the storage layer, read the file at path = FilePath.
11. Decrypt the file using the Password in step 9.
12. Calculate the hash value of the decrypted file. Check if the hash within the metadata

store is equal to the hash so generated. If not signal File externally modified error.
13. Send the decrypted file back to the user as the response to REST API request.

5. DISCUSSION
When storing the data on the third party storage device, confidential data should always be
encrypted. As discussed before, encryption comes with the overhead of storing the encryption
keys. A system can either be trusted to keep these keys safely, or the keys can be split securely
between multiple systems. The SDSM relies on the fact that the chances of both systems getting
simultaneously compromised is extremely thin. Even if one of the systems is attacked, the
attacker will not be able to retrieve the key to decrypt the user data.

In the event of UDS getting compromised, the attacker will not be able to retrieve the password
because they are hashed and encrypted with MEK. This also prevents the possibility of attacker
sending the hashed password to obtain the temporary credentials. The private key is similarly
encrypted. In the event of a breach in the MS, with every entry in the store encrypted, it is difficult
for an attacker to retrieve the actual metadata value. The TCS, too, is encrypted similarly. This
prevents the attacker from stealing the temporary credentials and making a request.

Srivatsan Iyer & Tejas Arackal

International Journal of Security (IJS), Volume (8) : Issue (4) : 2014 45

If the MEK is compromised it would culminate into a high risk situation. This can be prevented by
using a highly secure mode of obtaining the MEK, which is out of the scope of the paper. The
main benefit of the proposed system is that in the event of such an exposure, the MEK can be
regenerated, and all encrypted values within dependent data stores -- TCS, MS and UDS can be
re-encrypted. The data that stays on the storage layer can stay untouched. Finally, there is a
possibility of a slightly different kind of attack wherein the encryption key for a file is somehow
guessed by an attacker at the storage layer. In this case, the mechanism of the encryption key
generation ensures that the key is distinct for every file. In other words, every other file will remain
untouched.

Having seen the ability of the system to mitigate threats, it’s worthwhile to compare it against the
systems presented above. Trusted Computing Group’s TPM needs a special hardware to be
installed in the server where the data resides reducing the portability of the system. Moreover, if
the encryption key is somehow compromised, the entire data on the disk can be decrypted.
However, this is not the case in the proposed system as every file is encrypted with a different
key.

When compared to OwnCloud’s server side encryption mechanism, the encryption methodology
provided in this paper is more reliable and resilient. The encryption in SDSM uses hashed
passwords, providing an additional layer of security. The passwords in the OwnCloud’s
implementation provide for both authentication and encryption functionality. Thus the loss or
modification of the login password has impact on encryption. Further, if the user store backend is
a separate dedicated system like LDAP, then a change in the password without OwnCloud’s
knowledge will cause the data to be inaccessible until the password is reset to its original value.
Moreover, change of password involves additional process in which all the objects stored in the
storage layer will be re-encrypted with the new password. The separation of password for
authentication and secret key for encryption in the proposed system ensures that the object still
remains accessible even in the event of password modification or loss.

Interestingly, OpenStack offers dual locking. In this design, each object is encrypted with a
combination of system’s service key and user-specific key. This is more secure than a system
that encrypts data using a fixed key. In this system, however, all files belonging to a specific user
are still encrypted with the same key. SDSM takes this one step ahead and provides for different
keys per file. In other words, encryption key of every file in the storage layer is unique.

6. FUTURE SCOPE
The system presented in the paper has a lot of scope for improvement. Some of them are
described below.

The problem of concurrent updates is outside of the scope of this paper. The challenge in such
concurrency control is that improper design can very easily lead to resource starvation. The
system being stateless adds to the challenge of implementing it effectively. Since the
concurrency-specific information will also be stored in the metadata store, there exists a
possibility of stale concurrency specific information if it is being replicated or if the accesses to the
store are not transactional and atomic. Designing a replication-aware system that implements
efficient concurrency control would be a great improvement.

Currently, the update process overwrites the data at a particular location and leaves no way to
retrieve the older version. A more favorable system would perform a soft-deletion instead of hard-
deletion. In other words, data can be versioned. Fortunately, the non-relational structure of the
metadata lends itself to storing version information. However, there are a few challenges involved
with this enhancement — a) no two versions can have the same path on the file system. b) key of
the metadata record no longer will be equivalent the actual path on the file system, c) with latest
update timestamp being used for generating the decryption key, older versions can be decrypted

Srivatsan Iyer & Tejas Arackal

International Journal of Security (IJS), Volume (8) : Issue (4) : 2014 46

since they were encrypted at a different time. Fortunately, a system so designed need not focus
on solving the problem of concurrent updates.

7. CONCLUSION
The challenges in securely storing users’ confidential data into a datastore have given rise to an
approach that would be vendor independent and theft secure. The SDSM system proposed in this
paper is based on a set of guidelines for a very secure system, free of implementation
dependencies. The elimination of single instance of encryption key by adopting a dynamic
approach to determine encryption key, prevents the attacker from getting an access to the
encryption key. The algorithm presented in the paper demonstrates the concept of dynamic
generation of encryption key, as well as key rotation across files. This combination makes the
system extremely secure.

8. REFERENCES
[1] E. McCallister, T. Grance, K. Scarfone. “Guide to Protecting the Confidentiality of
 Personally Identifiable Information (PII).” Internet:
 http://csrc.nist.gov/publications/nistpubs/800-122/sp800-122.pdf, Apr. 2010 [Sep 30, 2014].

[2] Taylor, N.E., Ives, Z.G. “Reliable storage and querying for collaborative data sharing
 systems.” in Proc. International Conference on Data Engineering (ICDE), 2010, pp. 40-51.

[3] Trusted Computing Group. “TCG Specification Architecture Overview.” Internet:
 http://www.trustedcomputinggroup.org/files/resource_files/AC652DE1-1D09-3519-
 ADA026A0C05CFAC2/TCG_1_4_Architecture_Overview.pdf, Aug. 2, 2007 [Aug. 10, 2014].

[4] A. Patel and M. Kumar. (2013, Apr.). “A Proposed Model for Data Security of Cloud Storage
 Using Trusted Platform Module.” International Journal of Advanced Research in Computer
 Science and Software Engineering. [On-line]. 3(4), pp. 862-866. Available:
 http://www.ijarcsse.com/docs/papers/Volume_3/4_April2013/V3I4-0430.pdf [Aug. 10, 2014].

[5] OpenStack. “Object Encryption: Extending Swift.” Internet:
 https://wiki.openstack.org/wiki/ObjectEncryption, Jul. 8, 2013 [Aug. 10, 2014].

[6] OpenStack. “KeyManager” Internet: https://wiki.openstack.org/wiki/KeyManager, Apr. 23,
 2013 [Sep. 28, 2014].

[7] OwnCloud. “ownCloud Administrators Manual” Internet:
 http://doc.owncloud.org/server/6.0/admin_manual/configuration/configuration_encryption.html
 Sep 9, 2014 [Sep . 28, 2014].

[8] T. Howes. (1995, Jul.). “The Lightweight Directory Access Protocol: X.500 Lite.” CITI
 Technical Report. [On-line]. 95(8), pp. 1-9. Available:
 http://www.openldap.org/pub/umich/ldap.pdf [Aug. 10, 2014].

