
Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 32

Requirement Engineering Challenges in Development of Software
Applications and Selection of Customer-off-the-Shelf (COTS)

Components

Dr. Sohail Asghar Sohail.Asghar@jinnah.edu.pk
Center of Research in Data Engineering (CORDE)
Mohammad Ali Jinnah University (MAJU)
Islamabad, Pakistan, 44000.

Mahrukh Umar Mahrukhumar@yahoo.com
Department of Computer Science,
Shaheed Zulfikar Ali Institute of Science
and Technology (SZABIST),
Islamabad, 44000,Pakistan.

Abstract

Requirement Engineering acts as foundation for any software and is one of the most
important tasks. Entire software is supported by four pillars of requirement engineering
processes. Functional and non-functional requirements work as bricks to support
software edifice. Finally, design, implementation and testing add stories to construct
entire software tower on top of this foundation. Thus, the base needs to be well-built to
support rest of software tower. For this purpose, requirement engineers come across
with numerous challenges to develop successful software. The paper has highlighted
requirement engineering challenges encountered in development of software
applications and selection of right customer-off-the-shelf components (COTS).
Comprehending stakeholder’s needs; incomplete and inconsistent process description;
verification and validation of requirements; classification and modeling of extensive
data; selection of COTS product with minimum requirement modifications are foremost
challenges faced during requirement engineering. Moreover, the paper has discussed
and critically evaluated challenges highlighted by various researchers. Besides, the
paper presents a model that encapsulates seven major challenges that recur during
requirement engineering phase. These challenges have been further categorized into
problems. Furthermore, the model has been linked with previous research work to
elaborate challenges that have not been specified earlier. Anticipating requirement
engineering challenges could assist requirement engineers to prevent software tower
from any destruction.

Keywords: Requirement Engineering, Customer-off-the-shelf (COTS), Multi-site software development.

1. INTRODUCTION
Software requirements describe the services provided by an application and reflect stakeholder’s needs.
Requirements are generated from the way people actually work in application domain. The process of
eliciting, analyzing, specifying, validating and maintaining requirements is known as Requirement
Engineering (RE). The main goal of requirement engineering is to meet the degree of end user’s
satisfaction in minimum cost and time.

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 33

Requirement elicitation phase investigates the problems in existing system. However, errors in
requirement phase are not identified during application development. Rather they remain concealed until
system becomes fully operational and stakeholder’s needs are not met [14]. The observation from various
researchers [14, 38] illustrate that the cost of fixing an error initially in elicitation process is of little value
as compare with other phases of software development. Thus, requirement elicitation plays an imperative
role in application development. Requirement engineers have to face myriad problems and difficulties to
consult requirements from stakeholders. These problems are then compiled and accumulated into
challenges. However, anticipating problems will therefore help requirement engineers to take actions
beforehand and prevent software from misfortune.

Additionally, unstructured elicited requirements from operational domain are difficult to manage and
model. Requirements need to be concise and well formatted based on any standard requirement
specification template [44, 45]. This help stakeholders and maintenance team to understand
requirements. Besides, it’s a good practice to model requirements so that they can easily be validated by
stakeholders. However, poor requirement specifications accelerate the level of ambiguity and
requirements become difficult to quantify - resulting in failure of software application.

System requirements explain the detailed description of what software is suppose to do. These
requirements are classified as functional requirements which deal with system functionality and non-
functional requirements which are software constraints. These requirements are essential for each other
and equally critical to achieve. However, decomposition, refinement and validation of these requirements
are foremost challenges faced by requirement engineers.

Additionally, most of software applications focus on reusable components for quick development in
minimum cost and time frame. Thus, selection of COTS components becomes a major challenge faced
by requirement engineers to match stakeholder’s requirements with available COTS products [15].
Besides, this introduces new challenges in requirement engineering. Selection of COTS components is
often based on subjective judgment. Vendors may take advantage of this and introduce new version for a
component, as a result original requirements are modified based on product available in the market.
Furthermore, there are no additional specifications provided by vendors for COTS component’s internal
architecture and descriptions. Thus, requirement engineers have minimum chance to verify whether
integrating a particular components with software will meet end user’s desire requirements or not.
Moreover, some of COTS components are often not tested by real-world users [15].

Prior research studies have often investigated challenges in one particular domain of requirement
engineering. However, this paper has merged RE challenges from different domains and accumulated
them here. The paper presents and categorized its background study into quadrant that is requirement
engineering process, system requirements, applications and product. They are further sub-categorized
accordingly. Later, each sub-categorized headings are discussed to identify problems and challenges in
that particular area. The paper summarizes different literatures and critically evaluates them.
Furthermore, it depicts a framework which elaborates RE challenges that were not highlighted earlier.
The framework specifies seven major challenges and classified those challenges into problems. The
major factors highlighted in the framework include technological crisis, economic crisis, external events,
requirement engineering process difficulties, organizational issues, stakeholder’s conflicts and time.
Besides, these factors are linked with quadrants of background study to provide a bigger picture of overall
RE challenges.

This paper is organized as followed. Section 2 gives an overview of prior research studies in a particular
area. In Section 3 challenges highlighted in previous work are critically evaluated. A framework and
description of the model is illustrated in Section 4. Finally, section 5 describes the conclusion and future
work. References are illustrated in section 6.

2. BACKGROUND STUDY
There are numerous challenges identified by researchers in various requirements engineering domain.
Prior studies have usually investigated challenges in only single area of interest such as challenges in

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 34

requirement elicitation and analysis [17] or challenges encounter in selection of COTS components [15].
However this section merges those challenges from different literatures. The section categorized
background study into four quadrants. These quadrants are further sub-categorized accordingly. Figure1.
Shows four major research areas covered in background study. These areas include requirement
engineering process, system requirements, applications and product. These areas have been further sub-
divided correspondingly. Requirement elicitation, requirement specification and requirement validation
have been categorized under requirement engineering process. System Requirement has been sub-
divided as functional and non-functional requirements. Application covers challenges in requirement
engineering for enterprise application and multi-site software development. Categorically, customer off-
the shelf (COTS) have been titled under products. These domains are sum-up in more depth as follow:

Figure1. Quadrant of research areas for background study

2.1 Requirement Engineering Process
Requirement elicitation, requirement specification and requirement validation have been categorized
under requirement engineering process.

2.1.1 Requirement Elicitation and Analysis:
Goldin and Finkelstein study highlighted that it has been a great challenge to comprehend stakeholder’s
needs and manage unexpected growth of requirements [17]. Quality of the software are contingent to
requirement elicitation, requirement analysis and requirement management [18]. The researchers have
proposed a method ‘abstraction-based requirement management (AbstRM)’ to conquer elicitation’s
challenges in requirement engineering. The information becomes contradictory and incompatible as it has
been acquired from different sources. Moreover, manual requirement analysis, discovery of important
processes and detection of abstractions (main concept) from scenarios have been foremost challenges
for requirement elicitor [19]. The researchers proposed a tool known as AbstFinder [20] which lists
important terms known as ‘abstraction identifiers.’ The meta-concept has been used to classified array of
identifiers into different categories such as agents, entities, actions, goals. Explanation for each
abstraction identifier is retrieved from scenarios. Furthermore, the identifiers and relationship among them
are represented in abstraction network. Omitted information is initially identified by elicitor from AbstRM’s
network diagram. Besides, impacts of modifications within requirement are also exhibited. Executive

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 35

summary and software requirement specification can be written precisely from abstraction identifiers [17].
The researchers have made an empirical assessment of AbstRM method by integration of AbstFinder
and DOORS tools. Systematic improvements in requirement engineering process can be made from
proposed method.

But however there are certain limitations in proposed tool. A lot of work ought to be done by elicitor to
review abstraction identifiers. A situation may occur where noun and verb are not distinguished by
AbstRM. For instance a sentence says “book a flight.” Humans can understand that it has been referred
to flight reservation [20]. Unfortunately, tool may consider word ‘book’ as a noun. Elicitors have to cross-
validate words from source what it really means. Irrelevant or redundant data can also be stated by tool.
Additionally, product features and their characteristics have only been specified for requirement
engineering tools. They do not explain to what degree the product can be integrated with another
requirement tool. Although, the websites like Volere [21] or Requirement tools [22] explained capabilities
and integration features, still do not specify those ‘elements’ which can be integrated or which cannot
[23]. Hence, a deep analysis of both products is required for integration of requirement engineering tools.
Besides, a costly software development life cycle is initiated within requirement engineering process that
becomes a challenge.

2.1.2 Requirement Specification:
Firesmith explained the problems in requirement specifications and solutions to prevail over them [26].
Traditional manual based documentation (often used in waterfall development cycle) usually consists of
incomplete and vague processes descriptions. Configuration and requirements management are
strenuous in manual based specifications. Besides, it is expensive to make copies of specification and
distribute to different stakeholders. The paradigm shift from traditional requirement engineering to modern
iterative requirement engineering has overcome most of these problems [27]. Iterative approach involves
requirement engineering process to be performed repeatedly for identification of bugs in requirements.
But substantial time is required for frequent elicitation and specification of software with loads of
requirements. Researcher has suggested to structure requirements into models (use- cases) for logical
specifications. Object oriented or extended relational databases can be used to store requirements into
repository for quick access and verification. Requirement specifications template and requirement
engineering tools can also assist in software requirement specifications. The paper has focused on
modeling the specifications for minimum traceability issues of requirements.

There are few limitations in specifying the requirements into use-cases [28]. But however the technique is
most often used for modeling specifications. However, storing requirements into requirement warehouse
can become problematic. Requirement engineers have to enter terabytes of requirements into repository
and modify each time when end users change their requirements.

2.1.3 Requirement Validation:
Sequeda has highlighted one of crucial task for requirement engineers are confirmation of requirement
specifications. [29] The specifications are usually not guaranteed with completeness and correctness.
Requirements are often ambiguous or vague which are difficult to verify. Quality of specifications can be
improved from different requirement verification and validation techniques. However, it becomes a
challenge for requirement engineers to select among different techniques that best corresponds with
requirement specifications. To overcome these problems researcher has proposed a model - taxonomy of
requirement specifications. The model divides the specifications into executable and non-executable
specifications. Non-executable specifications are written in natural language. These specifications can be
verified through using experimental requirement management (ERM) tool. Requirement document is
inserted in ERM which saves document in XML format. XSLT is later used to verify document [30, 31]. On
the other hand executable specifications are written in declarative languages such as java modeling
languages, which are verified through developing prototypes. The paper has explained different
requirement verification and validation techniques. Problems in requirements are identified initially which
enables to reduce errors in software.

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 36

However, expertise in ERM and XSLT is required by requirement engineers in addition to domain
knowledge. Besides, building a prototype for user’s requirement cannot ensure validation of non-
functional requirements.

2.2 System Requirement
System Requirement has been sub-divided as functional and non-functional requirements.

2.2.1 Functional Requirement:
Ya-ning, Shu-jiun, Sum, and Lin investigate various challenges and recommendations to overcome
problems in functional requirements [32]. Functional requirements are engaged with comprehensive
explanations and complicated structure models which are difficult to reveal. Preliminary unexplored
issues for requirement engineers are what functions need to be performed by software and how these
requirements should be illustrated. Besides, decomposition of requirements into activities is a
complicated task for requirement engineers [33]. Functional requirements gathered by different analysts
may become redundant and conflicting. To accomplish the objective of software, researchers have made
some recommendations. Gathered requirements need to be categorized and refined. Functional
requirements that are gathered by different analysts essentially be coordinated and synchronized. These
requirements need to be well understood and expressed systematically by requirement engineers.
Furthermore, confirmation of functional requirements needs to be made with stakeholders to reduce
future challenges. Concluding, the researchers have advice some recommendations for requirement
analysts to overcome challenges in functional requirements.

However, requirement management and traceability of requirements becomes really complex with
manually written functional requirements. Therefore, to keep these challenges aside formal methods play
imperative role in development of software. ‘Formalizing the requirement specification’ means specifying
the requirement mathematically from set theory and logic. These specifications are verified from set of
mathematical based rules to ensure that they meet formal specifications and they are then refined and
developed. Besides, formal specifications are concise and often complete which help to understand
problem domain and investigate errors. Although implementation of formal methods is costly and gave
myriad challenges but they endow with accurate result. Formal specification can also assist to develop
test cases easily with minimum human’s throughput. Moreover, another approach can be applying
Attribute Grammar Rules with Software Process Measurement Application [56]. This approach can assist
to determine the decomposition and structure of software processes.

2.2.2 Non- Functional Requirement:
Thomas review specifies that architectural structures are often modified by non-functional requirements
[14]. These requirements are poorly specified by stakeholders or they acquired substantial work to be
done. Considerably, architectural structure of software is selected among choices based on criteria’s
such as latency, throughput or high-availability. Therefore, non-functional requirements are not essential
to achieve if functional requirements have been fulfilled. Moreover, they are ambiguous to examine. “The
system shall be maintainable and robust.” Besides, these requirements are not verified by any method
[16].The paper illustrated the importance of architectural structure and functional requirements, to achieve
desire quality goals.

The paper has got various drawbacks. Functional requirements are what need to be done by system?
While non-functional requirements states ‘how’ the system should achieved that ‘what’? Consequently,
both requirements are equally critical to achieve [4]. Non-functional requirements are concerned with
emergent properties, for instance: reliability, performances or reparability etc [3]. These are constraints
and boundaries which are essential to be acknowledged in software development. The importance of
non-functional requirement has been grown-up with increased complexity of software and high demand of
quality products [1]. However, non-functional requirements to be elicited correctly and completely gave a
challenge; interactions with the knowledgeable stakeholders are needed. Researchers have found
strategy used in language extended lexicon (LEL) to elicit non-functional requirements [6]. LEL is used to
capture terms (phrases or words) peculiar to application field. The vocabulary system consisted of
symbols and each symbol is expressed in terms of notations and behavioral response in the operating
environment [5]. Additionally, non-functional requirements can be validated by developing tools and

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 37

applying abstract interpretation-based static analysis of source program and choosing abstract domains
[2]. Although, non-functional requirements gave challenge to be accomplished but they play ‘imperative
role’ in the system.

2.3 Product
Customer off-the shelf (COTS) have been titled under products.

2.3.1 Commercial off-the shelf (COTS):
Alves explained the challenges faced by requirement engineers in selection of COTS products [15].
Generally, organization specifications are not matched with COTS characteristics and requirements are
accommodated according to the features present in product. “Let the available COTS feature determine
the requirement [15].” Moreover, new updated strategies in COTS might be introduced by vendors. As a
result, an erratic situation occurred at times when customers are forced or misguided by suppliers to have
adverse product for their organization [12]. The author has justified goal-oriented approach to achieve
optimum balance between the requirements and COTS features [13]. The activities involved in goal-
oriented approach are identification of goals or objective of the system. Once the goals are established,
possible COTS in the market are identified based on their quality and functional aspects. Evaluations of
the COTS are matched with the goals. The balance is achieved when the goals collaborated with the
COTS features. At the end, the desired COTS product matched with the goals is selected [15].

The limitation of the paper is that the researcher has not focused on the relationship between the COTS
features and technology. The specification of the technology in the goals may eliminate assessment of
many products in the market. For instance, we may evaluate a product that works on the client-server
architecture, while the organization has been operated in distributed system. In such case, it becomes a
challenge to judge the right product for the organization requirements. Besides, the modification of
requirements according to COTS product available in market may results in the change of business
strategies, which become a great risk. COTS components can be evaluated by using fuzzy logic
approach [58]. Fuzzy logic is a mathematical based technique to deal with imprecision, uncertainty and
information granularity. The approach takes functionality, reusability, performance, security, and
portability as input and gives a crisp value of selection efforts.

2.4 Applications
Application covers challenges in requirement engineering for enterprise application and multi-site
software development.

2.4.1 Enterprise Application:
Salim highlighted requirement engineering challenges in the development of an enterprise application [7].
The problems encountered by requirement engineers in understanding application domain and business
processes are enlightened. Classification of extensive data, providing insufficient information has been a
great challenge. Besides, stakeholders have inadequate knowledge or there are no end users for entirely
new system [8]. Furthermore, the documentation of software requirements based on standards gave a
vital responsibility. Validation and changes within the requirements are also complex [9] [10].
Furthermore, lack of human resources, technical expertise in quality management, knowledge of
formalized systems, inadequate knowledge in internal auditing are the foremost challenges faced in small
and medium-sized enterprises (SMEs) [57]. The paper can be a helpful source of the material.
Requirement engineers can broader their vision to focus on major problems what exist today and how
they can better control these challenges to make effective decisions in future.

However, enterprise applications are developed from coalition of business and IT strategies. But
unfortunately, there are extensive communication gaps between functional departments. Therefore, it
becomes a crucial task for requirement engineers to understand and synchronize the strategies initiated
by business departments.

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 38

2.4.2 Multi-site Software Development:
Berenbach emphasized on challenges and issues in distributed requirement engineering process [24].
End user’s requirements are gathered by requirement analysts who are geographically dispersed.
Collected requirements are integrated later for a single software development. Researcher has explained
some of distributed structures in distributed requirement process. The problems emerged in these
structures have also been pointed out. Inconsistent processes gathered from remote sites create
complexity in the requirements. Besides lack of synchronization among analysts are problematic.
Requirements gathered from different sites may diverge in applied techniques. For example, site A have
used use cases while site B have flow charts. Consequently, requirements are failed to come up with a
conclusion what system actually suppose to do? Moreover, un-cleared responsibilities also become
confronting [25]. Task assigned to an analyst may presume the responsibility of other analyst. Solutions
to these challenges have also been recommended by the researcher. Project manager needs to inspect,
a particular tasks has been performed by analysts. Priorities ought to set initially to avoid ambiguities.
Additionally, requirements need to be cross-reviewed regularly from remote sites. To achieve an improve
coordination among analysts at different sites a facilitator need to be hire. The study aim to find problems
in distributed requirement engineering. Researcher has discussed real world scenario of Siemens
Corporate.

However, integrated requirements might not correspond with all site’s needs. A system may be successful
for one site and a failure for another due to miscellaneous organizational culture. Hence, distributed
requirement engineering process is also engaged with significant challenges.

The literature review has been summarized in Table 1. The table shows summary for prior researches,
main key points and limitations according to particular requirement engineering domain. The limitations in
table have been explored by us.

3. CRITICAL EVALUATION
The following section deals with our contribution to prior work. Each of the themes of literatures in
previous section is compare among each other.
There are variety of techniques used to collaborate between requirement analysts and end users to elicit
requirements. For instance, interviews, questionnaire, ethnography or even return-on-investment (ROI)
analysis can identify end user’s current operating environment [38, 39, and 44]. However, there are
certain advantages and disadvantages in these processes discovery that depends on organization’s
environment [40].

According to Goldin and Finkelstein, abstraction-based requirement management (AbstRM) surmounts
challenges in requirement elicitation [17]. The technique identifies important terms known as ‘abstraction
identifiers’ from application domain. These abstraction identifiers can overcome the challenges
highlighted by Firesmith [26] in requirement specifications by formalizing and structuring requirements.
For instance, the identified terms can determine name for a particular use case. In addition, variables or
objects declared in a prototype for validation of requirements as suggested by Sequeda [29] could be
related to general terms used in operating environment. This would help end users to gain better
understanding about software requirements and minimize the consequence of requirement engineering
challenges. AbstRM does not only state identifiers but distinguish sub-identifiers as well. For instance,
identifier ‘name’ comprise of first name, middle name and last name. Meta-concept used in AbstRM then
categorized these identifiers into agent, goals or entities. Thus, the technique can aid to classify extensive
data into categories in development of enterprise application and conquer the challenges highlighted by
Salim [7]. Moreover, inconsistent processes gathered from remote areas which becomes a challenge in
multisite software development explain by Berenbach [24] can be cross-reviewed through network
diagram. Contradictory process description identified from incomplete relationships in network diagram
can be piloted to navigate and attain further process description.

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 39

Domain Summary Key Points Limitations
Requirement
Elicitation and
Analysis

Comprehending stakeholder’s
needs is a great challenge. AbstRM
has been proposed to overcome
elicitation challenges. [17]

AbstRM has been developed
by integrating AbstFinder
and Doors tools.

AbstRM may not distinguish
between nouns and verbs;
integration of tools is a
challenge.

Requirement
Specification

Requirement specifications need to
be structured into models (use-
cases). [26]

Requirements need to store
in a repository for quick
access.

Requirement engineers
have to enter terabytes of
requirements into repository
and modify them.

Requirement
Validation

A model ‘taxonomy of requirement
specifications’ has been proposed.
The model has divided requirements
into executable and non-executable
specifications for convenient
requirement validation. [29]

Different requirement
verification and validation
techniques have been
discussed to overcome the
problems initially.

Expertise in ERM and
XSLT is required.

Functional
Requirement

Problems lie in identifying what
software should do? And how to
illustrated the requirements;
Decomposition of requirements is
complicated; Confirmation of
functional requirements is essential.
[32]

Recommendations can
assist requirement analysts
to look into the problem
deeply.

Static and dynamic
requirements which are
correlated with functional
requirements have not
been focused.

Non-
Functional
Requirement
(NFRs)

Architectural structures are modified
by non-functional requirements.
These requirements are not
important if functional requirements
have been fulfilled. They are difficult
to elicit and verify. [14]

Architectural structures and
functional requirements play
important role in software
development.

Both the system
requirements are critical to
achieve; Language
extended lexicon can be
used to elicit non-functional
requirements.

Commercial
off-the shelf
(COTS)

Selection of COTS products gives a
major challenge. Goal-oriented
approach can be used to achieve
optimum balance between end
user’s requirement and COTS
features. [15]

A model has been proposed
for activities involved in
COTS selection which also
explain how to achieve
optimum balance between
the goals and COTS

No relationship between
COTS features and
technology has been
identified; change of
requirements based on
COTS available may
change business strategies.

Enterprise
Application

Problems in understanding
application domain; stakeholder’s
lack of knowledge; standard based
documentation; changes within
requirements are some of foremost
challenges in enterprise application
development. [7]

Requirement engineers can
analyze deeply to the
problems that exists today
and how they can better
control these challenges.

Synchronization of the
strategies initiated by
organization departments is
a challenge.

Multi-site
Software
Development

Inconsistency of processes; lack of
synchronization among dispersed
analysts; use of different
techniques, ambiguity in
responsibilities are some of
challenges in distributed
requirement engineering. [24]

Researcher has discussed
real world scenario of
Siemens Corporate.

Integrating requirements
may not correspond with all
sites needs due to diverse
organization culture.

Table1. Summary of Literature Review

Dr. Sohail Asghar & Mahrukh Umar

International Journal of Software Engineering (IJSE), Volume (1): Issue (2) 40

Software requirement specification illustrates a problem and end user’s need. Complete requirement
specifications have provided software market with substantial assistance to develop and manage
software. Researchers have made conclusive studies for requirement specification quality characteristics
such as completeness, correctness, conciseness, validation and verifiable [41]. However, requirements
gathered in elicitation process needs to be specified and structured. Internet search on ‘requirement
engineering tools’ will list down thousands of tools to generate requirements or depict diagrams or models
(use-case).
Automated Requirement Measurement (ARM) Tool [42] is also one of them which endow quality software
requirement specifications, to overcome the challenges highlighted by Firesmith in specifying standard
based requirements [26]. AbstRM technique suggested by Goldin and Finkelstein search for identifiers
and categorizes them; [17] while ARM discovers indicators and generates reports for rectification in
specifying requirements [42]. However, DOORS integration with AbstFinder for development of AbstRM
needs knowledge of ‘Domino Xml Language’ (DXL) scripting language. Whereas, ARM has graphical
user interface that is more easy and convenient for analysts to specify requirements. Besides, various
existing requirement engineering templates [3, 45] can be selected and refined according to
organization’s requirements [26, 44]. These templates can assist analysts to write consistent and
complete specifications. In addition, complex specifications can lead to implicit requirements. Poorly
gathered requirements are often redundant and contradictory as identified by Firesmith [26]. To overcome
this problem, Sequeda [29] highlighted requirement specifications need to be validated.

Requirement validation and Requirement verification are often used interchangeably. However at times,
these terms become bewildering and problematic in identifying either to validate or verify requirements.
Requirement validation ensures “Building the right system” or requirements are compiled with correctness
and conciseness. Whereas, Requirement verification certify “Building the system right” guarantees that
end user’s requirements have been completely fulfilled. [9, 49] Validation entails stakeholder’s full
involvement in reviewing requirement artifacts. [47, 48] Elicited requirements are usually unrefined as
they are haphazardly captured from stakeholders. Therefore, to ensure that gathered requirements also
reflect correct functionalities about software, requirements need to be validated. “Have we got the
requirements right?” is a key question to be initially answered. Goldin and Finkelstein [17] approach to
elicit requirements (AbstRM) provide requirement validation through abstraction network diagram. The
links between nodes can be used to navigate and obtain more information about a particular area. [17]
However, such manual technique needs number of people to review network diagram and requires a lot
of time to check missing requirements. Whereas, testing of requirements through execution of prototypes
and XSLT method suggested by Sequeda [29] provides much simpler way to validate requirements.
Besides, stakeholders are able to visualize and understand requirements more precisely to recognize
omitted requirements. Firesmith [26] investigated challenges in reviewing of requirement specifications
which are known to be tedious and at same time one of the vital tasks. However, requirement engineers
find it difficult to stay attentive and remember the relevant requirements. Therefore, requirement
engineering validation tools such as Requirements Assistant [50], SAT [51] or RavenFlow [52] are often
used to review or particularize high-quality requirements. These tools ensure to prevent requirements
from errors and omissions. Nevertheless, to operate on such requirement validation tools proficient skills
and expertise are required. However, in contrast to requirement engineering validation tools Sequeda [29]
proposed a model- ‘taxonomy of requirement specifications’ for validation of requirements. In addition, the
method is more efficient rather than deciding and selecting one tool among thousands of requirement
validation tools which becomes a challenge for requirement engineers. Furthermore, use of pre-existing
components to develop software not only reduce costs but also provides with quality software in timely
means. [53] According to Alves, requirements are accommodated with available products in market. [15]
This generates new requirements to software development. Therefore, validation of requirements for
COTS components need full analysis for a particular component and matching it with end user’s
requirements. As Salim [7] and Berenbach, [24] explained requirement validation and inconsistent
process in development of enterprise application and multi-site software is one of the major challenges in
requirement engineering. Requirements needs to be complete, feasible and unambiguous but very
seldom these criteria are fulfilled [50].

Dr.Sohail Asghar & Mahrukh Umar

41
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

Figure2. Overview of prior research work and their association

Ya-ning, Shu-jiun, Sum and Lin elucidated that functional requirements express a process in
terms of relationship between inputs and resulting outputs. [32] These processes are usually
missed or undefined and gave major challenges. Hence, omitted process can initially be identified
by elicitor from AbstRM’s network diagram suggested by Goldin and Finkelstein. [17] Network
diagram exhibits association and interdependency among identifiers which can assist to confirm
requirements with stakeholders. Furthermore, functional requirements play a vital role in software
development and express the behavior of software. These behavior requirements are usually
depicted as use-cases in specifications suggested by Firesmith. [26] ‘A picture is worth a
thousand words’ hence, functional requirement become simple and easy to understand rather
intricate explanations. Besides, use-case assists analysts to systematically define and confirm
requirements as suggested by Ya-ning, Shu-jiun, Sum and Lin [32]. Moreover, scattered
requirements need to be categorized and refined. Thus, Firesmith research gave an idea to
compile and store requirements in repository for quick access and verification. [26] Furthermore,
functional requirements needs to be validated to ensure that they accept correct data types and
are categorized and refined as suggested by Ya-ning, Shu-jiun, Sum and Lin. [32] Thomas review
highlighted that functional requirements are important and should only be achieved. [14]
However, functional and non-functional requirements are both critically important to achieve.
Moreover, requirements are often unclear and vague when elicited from the stakeholders as
challenges highlighted by Goldin and Finkelstein. [17] Therefore, introduction of goal oriented
approach suggested by Alves [15] in selection of COTS components offers a way to clarify
functional requirements through decomposition and refinement of requirement statements. [54]

Non-functional requirements are critical to achieve. However, if these requirements are well
elicited, they can reduce the challenges highlighted by Thomas. [14] Therefore, whenever non-

Dr.Sohail Asghar & Mahrukh Umar

42
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

functional requirements are appended or changed; network diagram proposed by Goldin and
Finkelstein [17] can trace the impact it produce on other software requirements. In addition,
Thomas argues non-functional are ambiguous to examine [14]. However, non-functional
requirements are equally important as functional or behavioral requirements. They are concerned
with emergent properties that exhibited by software. These requirements are constraints to
software such as reliability, performance or maintainability [3]. Unlike behavioral requirements,
non-functional requirements are not represented in use-cases. However, these constraints are
usually specified as suggested by Firesmith [26] in graphical notations [43] or in mathematical
terms. Furthermore, non-functional requirements are not verified by any method [14]. However,
Cortesi and Logozzo suggested that non-functional requirements can be validated by developing
prototypes or tools and applying abstract interpretation-based static analysis of source program
and selecting abstract domain. [2] Moreover, the identification of goals suggested by Alves [15]
direct to ask ‘what’, ‘why’, ‘how’ questions. Therefore, goal-oriented approach will provide
requirement engineers to understand non-functional requirements and analyzing them with more
potential alternatives.

Most of the software application development focuses on reusable components for quick
development in minimum cost and time frame. Thus, selection of COTS component becomes a
major challenge faced by requirement engineer to match the requirements with available COTS.
Therefore, to reduce the challenges as highlighted by Salim [7] and Berenbach [24] in enterprise
applications and multi-site software, there need to be a systematic process for selection of COTS
components for efficient development of software application. Thus, Alves [15] suggested goal-
oriented approach to achieve optimum balance between requirements and COTS features. In
addition to select COTS components from goal-oriented approach, abstraction identifiers
suggested by Goldin and Finkelstein [17] can also assist requirement engineers to make a
checklist in selection of COTS for important terms and ensure that these characteristics have
been fulfilled by the evaluated component. Besides, as new updated strategies in COTS are
introduced by vendors, COTS-based software requirements are tremendously affecting
requirement specifications. As there is cumulative change in requirements corresponding to
products evaluated therefore, requirement specifications are also modified resulting in incomplete
and out-dated requirements; giving rise to challenges identified by Firesmith [12, 26].

Moreover, Salim [7] explained enterprise applications are complex information systems. They
include people, processes, information and technology that interact with each other for
accomplishment of goals and objectives. [46] Hence, at times requirement specifications for
enterprise applications are complex. Classification of extensive data providing insufficient
information; stakeholders inadequate knowledge; no standard based requirement documentation
are adding layers to challenges identified by Firesmith [26], Sequeda [29] Ya-ning, Shu-jiun, Sum
and Lin [32], Alves [15] and Berenbach [24].

Although different emerging standards like ‘IEEE software engineering standards’ [3] gave an
efficient approach to document specifications, but however there is lack of focus on collecting
overall organization’s requirements that should be enclosed with development of enterprise
application. Consequently, requirement specifications often missed critical and important activity
operated in organization environment introducing challenges for requirement engineers and
stakeholders. [7]

Berenbach [24] explained emerging collaboration of distinct organizations leads to development
of complex multi-site software. [25] Requirements are elicited by analysts at different sites. They
may use different techniques and notations for specifying requirements, which becomes difficult
to comprehend and cross-review. [24] To prevail over such issue, requirement specifications
gather from disperse sites can be stored in distributed requirement repository as suggested by
Firesmith [26]. This would help to avoid ambiguities and requirement redundancy in
specifications. Furthermore, requirement engineering often directed towards requirement
conflicts. For example, analysts at multi-site software have divergent perceptions and directions.
Alves suggested [15] identification of goals initially for selection of COTS. However, the approach

Dr.Sohail Asghar & Mahrukh Umar

43
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

can be useful to deal with analyst’s conflict as well. Meeting one goal may also interfere with
achieving of other goal. [54]

Furthermore, above critical evaluation is depicted in Figure 2. The diagram shows an overview of
previous research work. Besides, these research studies have been associated among each
other as described in above paragraphs and illustrated in diagram through arrows from different
colors.

4. REQUIREMENT ENGINEERING CHALLENGES
Requirement Engineering is a core process for software development life cycle. Bugs in
requirements are not identified during development rather they remain concealed until system
becomes operational and customer requirements are not met. Poor requirements lead to not only
modifications in requirement specifications but require re-designing, re-implementing and re-
testing for entire software. Therefore, requirement engineers have to struggle and conquer
uncountable numbers of challenges for development of effective and efficient software.

Anticipating requirement engineering challenges will grant opportunities for requirement
engineers to enhance software success rate. There have been many investigations conducted to
explore different challenges in various domains of requirement engineering. However, these
investigations proposed models and gave recommendations to defeat challenges only in a single
particular area of requirement engineering (as highlighted in section 2).

In addition to previous research work [17, 26, 29, 32, 14, 15, 7, and 24] and background study,
we present a framework for requirement engineering challenges as demonstrated in figure 3. In
addition to requirement engineering challenges that are depicted in figure 2 and highlighted in
section 3; the model has illustrated more challenges that recur in development of software
application and selection of COTS components. Requirement engineering process, System
requirements, and Application encounters all these seven major challenges. Whereas, COTS
component title under the product only encounters technological, economic crisis and
requirement engineering process challenges. The empty spaces in model indicate future
problems that can recur in those seven challenges that are highlighted in model.

The model encapsulates overall challenges faced in requirement engineering rather than
identifying them in any particular domain. Besides, the model provides with a systematic
understanding for requirement engineers to broader their vision and identifies upcoming problems
and risks in requirement engineering. Additionally, the model is linked with previous research
work to elaborate challenges which were not identified earlier by researchers. Requirement
engineering challenges have been categorized into seven components. These components
include:

 Technological crisis
 Economic crisis
 External events
 Requirement engineering process
 Organizational issues
 Stakeholder’s conflicts
 Time.

These categorized challenges are further classified into problems that occur during requirement
engineering phase. Conclusively, the framework model identifies different problems and later
integrates those problems to explore what provoke challenges in requirement engineering.

Requirement engineering problems and challenges presented in the model are explained as
follow:

Dr.Sohail Asghar & Mahrukh Umar

44
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

4.1 Technology
Obsolete requirement engineering tool may not provide with accurate functionality for instances,
requirement tools for development of prototypes or stimulations. Discarding these requirements
engineering tool completely and installing new tool may not be able to convert or emulate the file
format. Besides, integrating collaborative features of two requirement engineering tools to obtain
functionalities requires deep structural and functional analysis of both available tools, which
becomes cumbersome.

In additional, procurement of Customer-off-the shelf (COTS) product is ad-hoc which becomes a
challenge later. Selection for COTS products is usually subjective or vague and does not meet
customer’s needs. The requirements are modified according to available products in market.
Besides, configurations in COTS may have major influence on selected product. The new version
might not have features that were being evaluated. Thus, underestimating these challenges in
selecting accurate component may lead to software failure that does not meet customer’s
requirements.

4.2 Economic Crisis
IT market is all about new emerging technologies and challenges [35]. Unsolved challenges may
increase overall cost of software. For instance unclear software requirements may increase
maintenance cost. Besides, there are various other challenges that can come across -
Organization developing a system or customers may face financial downfalls during development
of software. Increase in accounts payable, out of control spending and poorly planned budgeting
strategies can initiate bankruptcy of customer or organization. In addition, variation in
depreciation, taxes or stock exchange rates may create difficulties for requirement engineers to
manage requirement and select COTS in allocated budget.

4.3 External Events
Targeted effectiveness in software can be achieved if challenging external threats and risk are
addressed beforehand [36]. Accidental deletion of valuable data, file corruption, virus-infection or
hardware failure may create catastrophe situation for requirement engineers. Besides, external
events such as fire, bomb blast or unusual climatic condition may affect requirement engineering
process. Consequently, such unpleasant incidents fine an astronomical amount of cost within
requirement engineering.

4.4 Requirement Engineering Process
The goal of requirement engineering process is to investigate what tasks need to be performed
and what are the boundaries and constraints in software. Acquiring and comprehending
requirements for complex domains or critical systems have always been great challenges for
requirement engineers. Additionally, stakeholders do not articulate their requirements precisely
during requirement discovery process. As a result, requirement specifications are vague,
perplexing and ambiguous. Hence, decomposition, modeling of requirements and identification of
business processes becomes complicated. Besides, there are over requirement specification
which usually defines solutions rather than identifying true problems. Consequently, poor
requirement specifications act out as poor process definitions that develop poor software.
Validation of requirements improves likelihood of project’s success therefore prototypes are
developed to ensure requirements and right solution. However, prototype may provide insufficient
details due to error occurrence and correcting those errors may allow software to get behind
schedule.

Dr.Sohail Asghar & Mahrukh Umar

45
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

Figure3. Framework for Requirement Engineering Challenges

4.5 Organizational
Software applications are developed from collaboration of business and IT strategies. However,
unfortunately there is extensive diversity of perceptions within organizational departments.
Hence, aligning and synchronizing strategies recommended by different departments become
critical task for requirement engineers.

Additionally, an effective business process represents efficient functioning of an organization. In
spite, organizations are rapidly focusing on re-designing of business processes to make
substantial changes and improvements in their level of performance. Eventually, changes within
business process also transform software requirements. Thus, it acquires substantial efforts to
manage these volatile requirements, which set great challenges in requirement engineering.

Dr.Sohail Asghar & Mahrukh Umar

46
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

4.6 Stakeholders
A successful project has a great influence on knowledgeable and experienced stakeholders.
Otherwise, software may face significant risks [37]. Inadequate technical skills with requirement
engineers and lack of domain knowledge can have a major impact on software. Requirement
engineers are unable to adequately address problems and end user’s needs. Besides, some
pioneer requirement engineers may be ignorant to emergent requirement engineering tools.
Therefore, ineffective performance by requirement engineers may results in outdated and error
prone requirements.

However, difference in perception or unclear roles and responsibilities leads to confrontations
among requirement engineers. These intra-group conflicts may eliminate effective coordination
between stakeholders which may have negative impact on performance. Besides, requirement
engineer might not be available at critical time or resign from their job. Recruiting and training
new employee perhaps not be feasible for successfully completing the development of software
within timeframe and budget.

4.7 Time
Scheduling is a process for planning and managing time. Scheduling time is one of the
predominantly difficult job and entirely critical to software success. However, usually the time
required in completion of tasks during requirement engineering phase is underestimated. As a
result, delivery of milestones gets delayed particularly when tasks are on critical path. Great
challenges endure for requirement engineers to manage and accomplish seemingly unlimited
tasks. Hence, requirement engineers start to take short cuts or sometimes ignore to emphasize
and focus on important aspects. Consequently, requirements are poorly established or gets
behind schedule. Besides, these futile requirements also lead to downstream failure of entire
software.

5. CONSLUSION & FUTURE WORK
Understanding stakeholder’s needs; incomplete process description; verification and validation of
requirements; selection of COTS products with minimum requirement modifications are foremost
challenges faced during requirement engineering. The paper illustrates several problems in
requirement engineering domain. These problems have been reviewed from various literatures.
Our study is categorized into quadrant of requirement engineering process, system requirements,
applications and product. These quadrants are then sub-categorized correspondingly. The
challenges and techniques presented by prior literatures have been summarized and critically
reviewed. Besides, the paper has made a comparison between different techniques presented in
various literatures and had associated those techniques among each other. Moreover, it
represents a framework which illustrated those challenges that were not identified by previous
research work. The major challenges highlighted in the framework include technological crisis,
economic crisis, external events, requirement engineering process difficulties, organizational
issues, stakeholder’s conflicts and time. These challenges have also been sub-divided into
problems. Besides, these challenges are linked with quadrant of background study to provide a
bigger picture. Requirement engineering process, system requirements, and application
encounter all seven major challenges. Whereas, product only encounters technological,
economic crisis and requirement engineering process challenges. There are empty spaces in the
framework point to future work in identifying more problems and challenges.
In future, we will be looking forward to prioritize these challenges by calculating the impact of
each challenge on development of software applications.

6. REFERENCES

1. G. Maria C. de and J.Brelaz de. “Improving the Separation of Non-Functional Concerns in
Requirements Artifacts.” In proceedings of the 12th IEEE International Conference on
Requirements Engineering (RE 2004), 6-10 September 2004, Kyoto, Japan 2004.

Dr.Sohail Asghar & Mahrukh Umar

47
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

2. A. Cortesi and F. Logozzo. “Abstract Interpretation-Based Verification of Non-functional
Requirements.” Lecture Notes in Computer Science, Springer Berlin/Heidelberg, 3454: 54-59,
2005.

3. IEEE. IEEE Recommended Practice for Software Requirement Specification, 1988.

4. L. Chung, B.A. Nixon, E. Yu, and J. Mylopoulos. “Non-Functional Requirements in
Software Engineering” Springer Berlin / Heidelberg, pp.363-379 (2009)

5. L. M.Cysneiros and E.Yu. “Perspectives on software engineering”, Julio Cesar Sampaio
do Prado Leite, Jorge H. Doorn, Kluwer Academic Publishers, pp. 114-138 (2004).

6. L. Marcio and J.C. S. do Prado. “Using the Language Extended Lexicon to Support Non-
Functional Requirements Elicitation.” Anais do WER01 - Workshop em Engenharia de
Requisitos, Buenos Aires, Argentina. November 22-23, 2001.

7. J. Salim. “Requirement Engineering for Enterprise Application Development: Seven
Challenges in Higher Education Environment.” World academy of Science, Engineering and
Technology, 4:101, 2005.

8. H. d. Vries, H. Verheul and H. Willemse. “Stakeholder Identification in IT standardization
processes.” Standard Making: A Critical Research Frontier for Information Systems MISQ Special
Issue Workshop, 2003.

9. A.T. Bahill. and S. J. Henderson. “Requirements Development, Verification and
Validation Exhibited in Famous Failures”. Wiley Periodicals, Inc, Systems Engineering, 8(1): 1-14,
2005.

10. F.T. Sheldon and H. Y. Kim. “Validation of guidance control software requirements
specification for reliability and fault-tolerance.” In IEEE annual proceedings on Reliability and
Maintainability Symposium, Washington, DC, USA 2002.

11. M.Oktay, A.B. Gülbağcı, and M.Sarıöz. “Architectural, Technological and performance
issues in enterprise applications.” World Academy of Science, Engineering and Technology, 27:
224-230, 2007.

12. C. Alves, J. B.P. Filho, J.Castro. “Analyzing the tradeoffs among requirements,
architectures and COTS components.” pp. 23-26, 2001.
Website: http://wer.inf.pucrio.br/WERpapers/artigos/artigos_WER01/alves.pdf
Access Date: November 2008.

13. C.Alves and A.Finkelstein. “Investigating Conflicts in Cots Decision-Making.” International
Journal of Software Engineering and Knowledge Engineering, 13(3):1-21, 2003.

14. B.Thomas. “Meeting the challenges of Requirement Engineering.” News at Software
Engineering Institute. 2009. Website: http://www.sei.cmu.edu/library/abstracts/news-at-
sei/spotlightmar99pdf.cfm. Access date: January 2010.

15. C.Alves and A.Finkelstein. “Challenges in COTS Decision-Making: A Goal Driven
Requirements Engineering Perspective.” In Proceedings of the 14th international conference on
Software engineering and knowledge engineering. Ischia, Italy, 2002.

16. C.J. Fidge and A.M. Lister. “The challenges of Non-functional computing requirements.”
Pp. 6-7.Website: http://sky.fit.qut.edu.au/~fidgec/Publications/fidge93c.pdf.
 Access Date: November 2008.

Dr.Sohail Asghar & Mahrukh Umar

48
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

17. L.Goldin and A.Finkelstein. “Abstraction-based requirements management.” In
Proceedings of the international workshop on Role of abstraction in software engineering.
Shanghai, China, 2006.

18. A.V.Lamsweerde. “Requirements engineering in the year 00: a research perspective.” In
proceedings of the 22nd international conference on Software engineering, Limerick, Ireland.
2000.

19. Endava: White paper on Requirements gathering and analysis, pp. 7-10, 2007.
http://www.endava.com/resources/Endava.com-WhitePaper-RequirementsGathering.pdf Access
Date: October 2008.

20. L.Goldin and D.Berry. “AbstFinder, A Prototype Natural Language Text Abstraction
Finder for Use in Requirement Elicitation.” In IEEE Requirements Engineering, 1994.
Proceedings of the First International Conference.

21. Volere. Website: http://www.volere.co.uk/tools.htm Access date: November 2008.

22. Requirement tools. Website: http://easyweb.easynet.co.uk/~iany/other/vendors.htm
 Access date: November 2008.

23. L. K. Meisenbacher. “The Challenges of Tool Integration for Requirements Engineering.”
In Proceedings of SREP’05, Paris, France, 2005.

24. B.Berenbach. “Impact of organizational structure on distributed requirements engineering
processes: lessons learned.” In Proceedings of the 2006 international workshop on Global
software development for the practitioner. Shanghai, China 2006.

25. S. Timea, H. Andrea and P. Barbara. “The challenges of Distributed Software
Engineering and Requirements Engineering: Results of an Online Survey.” pp.9-13. Website:
http://www-swe.informatik.uni-
heidelberg.de/research/publications/TR_Distributed_RE_Version1.pdf. Access Date: October
2008

26. D.G. Firesmith. “Modern Requirements Specification.” Journal of Object Technology,
2(2):53-64, March-April 2003.

27. M.Gerdom and Dr. U. Rastofer. “Rapid requirements engineering – Does a specification
Always need to come at the start?” pp.7.
Website: http://www.compaid.com/caiinternet/ezine/mp-requirements.pdf Access Date:
Novemeber 2005.

28. M. Glinz. “Problems and deficiencies of UML as a requirement specification language.” In
Proceedings of IEEE 10th International Workshop on Software Specification and Design.
Washington, DC, USA, 2000.

29. F.S. Juan. “Taxonomy of verification and validation of software requirement and
specifications.” Website: http://www.cs.utexas.edu/~jsequeda/pub/Sequeda_VV_req_spec.pdf
Access Date: November 2008.

30. Advanced XML validation.
Website: http://www.ibm.com/developerworks/xml/library/x-crsfldvalid/index.html
Access Date: November 2008

31. Schematron: Validating XML using XSLT.
Website: http://www.ldodds.com/papers/schematron_xsltuk.html

Dr.Sohail Asghar & Mahrukh Umar

49
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

Access Date: November 2008.

32. Y.Chen, S.Chen, H.Sum and S.C.Lin. “Functional requirements of metadata system: from
user needs perspective.” In Proceedings of the international conference on Dublin Core and
metadata applications: supporting communities of discourse and practice---metadata research &
applications. Seattle, Washington 2003.

33. J.H.Hausmann, R.Heckel, G.Taentzer. “Detection of conflicting functional requirements in
a use case-driven approach: a static analysis technique based on graph transformation.” In
proceedings of the 24th International Conference on Software Engineering. Orlando, Florida
2002.

34. A.I. Anton, J. H. Dempster and D.F. Siege. “Managing Use Cases During Goal-Driven
Requirements Engineering: Challenges Encountered and Lessons Learned.” Technical Report:
TR-99-16, 1999.

35. DK.M: “Opportunities and Challenges of 21st Century Emerging Technologies.”
Website: http://mi2g.net/cgi/mi2g/reports/speeches/220108.pdf
Access Date: November 2008.

36. K.Thiagarajan. “Making provisions for external risks.”
Website:http://www.thehindubusinessline.com/iw/2001/03/11/stories/0511e012.htm
Access Date: December 2008.

37. N. Turbit. “Key Stakeholder Support”
Website:http://www.projectperfect.com.au/info_key_stakeholder.php Access Date: December
2008.

38. B.Nuseibeh and S.Easterbrook. “Requirements engineering: a roadmap.” In Proceedings
of the Conference on the Future of Software Engineering. Limerick, Ireland 2000.

39. Ian Sommerville: “Software Engineering” 7th Edition, Addison.W, pp.168-180 (2004)

40. Search software quality.
Website:http://searchsoftwarequality.techtarget.com/expert/KnowledgebaseAnswer/0,289625,sid
92_gci1335438,00.html
Access Date: January 2009.

41. W.M. Wilson, L.H. Rosenberg , L.E. Hyatt. “Automated analysis of requirement
specifications.” In Proceedings of the 19th international conference on Software engineering
Boston, Massachusetts, United States 1997.

42. Automated Requirement measurement tool.
Website: http://satc.gsfc.nasa.gov/tools/arm/ Access Date: January 2009.

43. Non Functional Requirements.
Website: http://www.threesl.com/pages/webletter-
February06/Non_Functional_Requirements.php. Access Date: January 2009.

44. L. V., J. Donn. “Writing Software Requirements Specifications.”
Website:http://www.techwrl.com/techwhirl/magazine/writing/softwarerequirementspecs.html
Access date: January 2009.

45. Templates. Website: http://www.stcsig.org/mgt/reference.htm
Access Date: January 2009.

Dr.Sohail Asghar & Mahrukh Umar

50
International Journal of Software Engineering (IJSE)), Volume (1): Issue (2)

46. Jeffrey L. W., Lonnie D. B. and, Kevin C. D. “Systems Analysis & Design Methods.”
International Edition, Irwin Professional Publishing; pp. 12 (2000)

47. K. Ryan. “The role of natural language in requirements engineering.” In proceedings of
IEEE International Symposium on Requirement Engineering, San Diego, CA, 1993.”

48. B.H. C. Cheng and J. M. Atlee. “Research Direction in Requirement Engineering.” In
International Conference on Software Engineering on Future of Software Engineering.
Washington, DC, USA, 2007.

49. AOF Requirements and Acceptance.
Webiste:http://www.aof.mod.uk/aofcontent/tactical/randa/content/vandv.htm
Access Date: January 2009.

50. Requirements Assistant. Website: http://www.requirementsassistant.nl/
Access Date: January 2009.

51. SAT. Website: http://www.cassbeth.com/
Access Date: January 2009.

52. RavenFlow. http://www.ravenflow.com/
Access Date: January 2009.

53. W.J.Lloyd. “A Common Criteria Based Approach for COTS Component Selection.”
Journal of Object Technology, 4(3):27-34, 2004.

54. E.Yu and J.Mylopoulos. “Why Goal-Oriented Requirements Engineering.”
Website: http://www.cs.toronto.edu/pub/eric/REFSQ98.html. Access Date: January 2009.

55. L. Chung. “Representing and Using Non-Functional Requirements for Information System
Development: A Process-Oriented Approach.”
Website: http://www.cs.toronto.edu/~jm/Pub/TSE92.pdf. Access Date: January 2009.

56. R. Atan, A. A. Abd. Ghani, M. H. Selamat, R. Mahmod. “Automating Measurement for
Software Process Models using Attribute Grammar Rules”. International Journal of Engineering, 1
(2): 24-33, 2007.

57. A.S.Poza, M. Altinkilinc, C. Searcy. “Implementing a Functional ISO 9001 Quality
Management System in Small and Medium-Sized Enterprises”. International Journal of
Engineering (IJE), 3(3): 220-228, 2009.

58. Kirti Seth, Arun Sharma, Ashish Seth. “Component Selection Efforts Estimation– a Fuzzy
Logic Based Approach”. International Journal of Computer Science and Security, (IJCSS), 3 (3):
210-215, 2009.

