
Parul Gandhi & Pradeep Kumar Bhatia

International Journal of Software Engineering (IJSE), Volume (1): Issue (4) 63

Reusability Metrics for Object-Oriented System: An Alternative
Approach

Parul Gandhi gandhi2110@gmail.com

Department of Computer Science & Business Administration
Manav Rachna International University
Faridabad, 121001, India

Pradeep Kumar Bhatia pk_bhatia2002@yahoo.com
Department of Computer Science & Engineering
G. J. Universityof Science and Technology
 Hisar, 125001, India

Abstract

Object-oriented metrics plays an import role in ensuring the desired quality and have
widely been applied to practical software projects. The benefits of object-oriented
software development increasing leading to development of new measurement
techniques. Assessing the reusability is more and more of a necessity. Reusability is
the key element to reduce the cost and improve the quality of the software. Generic
programming helps us to achieve the concept of reusability through C++ Templates
which helps in developing reusable software modules and also identify effectiveness
of this reuse strategy. The advantage of defining metrics for templates is the
possibility to measure the reusability of software component and to identify the most
effective reuse strategy. The need for such metrics is particularly useful when an
organization is adopting a new technology, for which established practices have yet to
be developed. Many researchers have done research on reusability metrics [2, 9, 3,
4]. In this paper we have proposed four new independent metrics Number of Template
Children (NTC), Depth of Template Tree (DTT) Method Template Inheritance Factor
(MTIF) and Attribute Template Inheritance Factor (ATIF), to measure the reusability
for object-oriented systems.

Keywords: Object-Oriented Metrics, Reusability, Generic Programming, Template, Inheritance.

1. INTRODUCTION
Reuse of existing software components increase the quality and productivity in
software development and maintenance. Software reuse reduces the amount of
software that needs to be produced from scratch and hence less testing time for new
software. Industrial observers suggest that a reuse strategy could save up to 20% of
development costs [10]. With reuse, software development becomes a capital
investment. C++ templates are used to support the concept of reusability in object-
oriented programming. An object-oriented software system is a collection of classes
which are abstract data types and templates are a way of making classes more
abstract without actually knowing what data type will be handled by the operations of

Parul Gandhi & Pradeep Kumar Bhatia

International Journal of Software Engineering (IJSE), Volume (1): Issue (4) 64

the class. The ability to have a single class that can handle several different data
types means the code is easier to maintain, and it makes classes more reusable. This
raises questions about how generic programming included in the form of templates in
the code can be measured to identify effectiveness of this reuse strategy. The
measurement of reuse would help developers to monitor current levels of reuse and
provide insight in developing software that is easily reused. In this paper, four metrics
are proposed to measure amount of reusability included in the form of templates.
Reuse can be classified in one of the following ways: public/private, verbatim
/generic/leveraged, and direct/indirect. Public reuse is reuse of externally constructed
software while private reuse is reuse of software within a product [14]. We will
continue our study based on object-oriented metrics suite given by Chidamber and
Kamerer[5] and the MOOD metric suite[7]. Among the Chidamber and Kamerer metric
suite the most significant metrics for reusability are Depth of Inheritance Tree (DIT),
which indicates the length of inheritance [8] and Number of Children (NOC) which
indicates the width. Method Inheritance factor (MIF) and Attribute Inheritance factor
also indicates the reusability [7, 4]. Our main focus of this work is on using these
metrics to evaluate the characteristic of template classes which helps in developing
reusable software.

2. OO METRICS- AN OVERVIEW
OO Metrics play an important role in ensuring the desired quality and productivity of
the software project. To ensure the quality of the OO software many researchers have
proposed metrics suite [9, 5, 6]. The main metrics for OO software are briefly
described below [5].

Metric 1: Weighted Method Per Class (WMC) is the number of methods defined in
class. WMC is used to predict time and effort required to develop and maintain the
class. Classes with many methods are more application specific which limits the
possibility of reuse It can be defined as referred from[5]

1

n

i

i

WMC C

=

=∑

Where

• n No of methods defined in a class

• Ci Complexity of method i

Metric 2: Depth of Inheritance tree (DIT) can be defined as maximum inheritance
path from the class to the root class. The deeper a class is in the hierarchy, the
greater the number of methods it is likely to inherit, making it more complex. As a
positive factor, deep trees increase reusability because of inheritance feature[5].

Metric 3: Number of Children (NOC) can be defined as number of immediate sub-
classes of a class. NOC measures the breadth of a class hierarchy. Higher the value
of NOC , fewer the faults, which is desirable[5]. NOC, therefore, primarily evaluates
efficiency, reusability, and testability [8, 12,13].

Parul Gandhi & Pradeep Kumar Bhatia

International Journal of Software Engineering (IJSE), Volume (1): Issue (4) 65

Metric 4: Coupling Between Object (CBO) can be defined as number of classes to
which a class is coupled. Two classes are coupled when methods declared in one
class use methods or instance variables defined by the other class [5].

Metric 5: Response for a Class (RFC) can be defined as set of methods that can
potentially be executed in response to a message received by an object of that class.
Large RFC indicate more faults. Classes with high RFC become more complex and
their testing become more complicated [5].

Metric 6: Lack of Cohesion of Methods (LCOM) indicates the lack of cohesion of
methods. Given n methods M1, M2, …, Mn contained in a class C1 which also contains
a set of instance variables {Ii} . Then for any method Mi we can define the partitioned
set of [5]

P = {(Ii, Ij) | Ii ∩ Ij = φ} and Q = {(Ii, Ij) | Ii ∩ Ij ≠ φ}
then LCOM = |P| - |Q|, if |P| > |Q|
=0 otherwise

 3. GENERIC PROGRAMMING WITH TEMPLATE - AN OVERVIEW
Templates are useful feature of object- oriented programming to implement generic
constructs which can be used with any arbitrary type. Templates can be used to
create a family of classes and functions. C++ templates provide a way to re-use
source code as opposed to inheritance. With the help of template a single class can
be used to handle different types of data and a single function can be used to accept
different types of data which makes the code easier to maintain and classes more
reusable. templates provide sufficient information to a compiler’s optimizers
(especially the inliner) to generate code that is optimal in both time and space[1].
Templates can be classified into two categories: Class Templates and Function
Templates.

3.1 Class Template

Class Templates allow the classes to operate with generic type. These classes are
generic type and member function of these classes can operate on different data
types. This will overcome the limitation of classes to hold objects of any particular data
type. The following class template shown in Figure 1 illustrates how the complier
handles creation of objects using class template:

Parul Gandhi & Pradeep Kumar Bhatia

International Journal of Software Engineering (IJSE), Volume (1): Issue (4) 66

FIGURE 1: Source Code for Class Template

3.2 Function Template

The C++ language [11] supports parameterized types and functions in the form of
templates. With the help of templates the programmer can declare group of functions
that works for all data types. Function Templates compactly and conveniently perform
identical operations for each type of data compactly and conveniently. Based on the
argument types provided in calls to the function, the compiler automatically
instantiates separate object code functions to handle each type of call appropriately.
The main advantage of generic function is that they overcome the limitation of general
function which operates only on a particular data type. The following Function
template shown in Figure2 illustrates how the complier handles creation of functions
using function template:

template <class T1, class t2>

class Sample

{

T1 a;

T2 b;

………

};

/*when objects of templates class are created using the

following statements Sample <int, float>s*/

/*The compiler creates the following class sample with two

data members one is of int type and other is of float type*/

class sample

{

int a;

float b;

………

};

Parul Gandhi & Pradeep Kumar Bhatia

International Journal of Software Engineering (IJSE), Volume (1): Issue (4) 67

FIGURE 2: Source Code for Function Templates

4. PROPOSED METRICS
In this section we have proposed four independent metrics and illustrate their use by
computing their values on example source code.

4.1. Metric 1: Number of Template Children (NTC)

The metric NTC can be defined as number of immediate sub-classes of a Template
class.

FIGURE 3: Source code for calculating metric NTC

In this example there is one class B which inherits from a template class A therefore
Number of Template Children (NTC) is 1. The more the value of metric Number of
Template Children (NTC), more reusable software components are included in the
projects.

template<class T>

class A

{

……

};

template<class S>

class B: public A<S>

{

……..

};

Class c

{

……

};

template <class T>

T large (T a, T b}

{

return a > b ? a : b ;

}

// Function can be called as follows

int a,c=5,d=4;

a=large(c,d);

/*The compiler creates the following

function for data type int:*/

int large (int a, int b)

{

return a > b ? a : b ;

}

Parul Gandhi & Pradeep Kumar Bhatia

International Journal of Software Engineering (IJSE), Volume (1): Issue (4) 68

4.2. Metric 2: Depth of Template Tree (DTT)

The metric DTT can be defined as maximum inheritance path from the class to the
root template class. In this example class B inherits from class A and class C inherits
from class B Thus if we start the root node at level 0 the Depth of Template Tree
(DTT) will be 2.

FIGURE 4: Source code for calculating metric DTT

The greater the metric Depth of Template Tree (DTT) value, greater is the reusability
since generic programming is form of reuse.

4.3. Metric 3: Method Template Inheritance Factor (MTIF)

MTIF is defined as the ratio of the sum of the methods inherited from template classes
of the system under consideration to the total number of available methods (locally
defined plus inherited) for all classes.

MTIF= 1

1

()

()

n

t i

i

n

a i

i

M C

M C

=

=

∑

∑
* NO

n Total number of classes
NO Number of Objects of Template classes
MiCi Number of methods declared in class i
MtCi Number of the methods inherited from
 template class i
Ma(Ci) MiCi + MtCi Total no of methods invoked

template<class T>

class A

{.....}

class B: public A

{....};

Class C :public B

{…..};

Class D

{…..}

Parul Gandhi & Pradeep Kumar Bhatia

International Journal of Software Engineering (IJSE), Volume (1): Issue (4) 69

FIGURE 5: Source code for calculating metric MTIF

No of template inherited method =0+1 =1
No of methods declared in each class 1+1 =2
Total=3
If we create two objects of class B

MTIF=(1*2)/3=0.6

The greater the value of metric Method Template Inheritance Factor (MTIF) will result
in the increased code reusability.

4.4. Metric 4: Attribute Template Inheritance Factor (ATIF)

AIF is defined as the ratio of the sum of attributes inherited from template classes of
the system under consideration to the total number of available attributes (locally
defined plus inherited) for all classes.

ATIF= 1

1

()

()

n

t i

i

n

a i

i

A C

A C

=

=

∑

∑
* NO

n Total number of classes
NO Number of Objects of Template class
AiCi Number of attributes declared in class i
AtCi Number of the attributes inherited from
 template class i
Aa(Ci) AiCi + AtCi Total no of attributes
 accessed

template <class T>

class A

{

T large (T a, T b)

{

……

}

};

class B: public A<S>

{

S sum(S c,S d)

{

….

}

};

Parul Gandhi & Pradeep Kumar Bhatia

International Journal of Software Engineering (IJSE), Volume (1): Issue (4) 70

FIGURE 6: Source code for calculating metric ATIF

No of template inherited attributes =0+ 2 =2
No of attributes declared in each class 2+2 =4
Total= 6
If we create two objects of class B

ATIF= (2*2)/6=0.6
The more the value of metric Attribute Template Inheritance Factor (ATIF), more will
be the code reusability.

5. DISCUSSION
The amount of function and class templates included in the system is dependent on
the number of generic constructs needed in the application. The more the value of
proposed metrics, more reusable software components are included in the projects.
Table1 shows the effect of these four independent metrics on Reusability. The
function and class templates are easier to maintain but difficult to test. The
observations made by analyzing metrics are shown below:
• The greater the metrics value, greater would be the code reusability.
• The greater the metrics value, less redundancy is involved in coding
• Experimental results show that the proposed metrics are only applicable for template
classes.
• If there are large number of function and class templates in a system, the testing and
 debugging of the function and class becomes more complicated since it requires
greater level
 of understanding at the part of developer.

template<class T>

class A

{

T a;

T b;

};

template<class S>

class B: public A<S>

{

S c;

S d;

};

Parul Gandhi & Pradeep Kumar Bhatia

International Journal of Software Engineering (IJSE), Volume (1): Issue (4) 71

Name
of
metrics

Relative
value
of metrics

Implication
for
Reusability

NTC increases increases

DTT increases increases

MTIF increases increases

ATIF increases increases

TABLE 1: Relative values for metrics ideal

for Reusability Quality factor

6. CONCLUSION
As organizations implement systematic software reuse programs in an effort to
improve productivity and quality, they must be able to measure their progress and
identify the most effective reuse strategies. In this paper, we have proposes set of four
object- oriented metrics and results are analyzed based on object-oriented code. Our
work presented in this paper emphasis to proactively use template mechanism which
aid to analyze how much reusability is incorporated in the coding process and hence
increases the use of generic programming. The advantage of using these metrics is
the added insight gained about reduction in lines of code via using more generic
programming in the form of function and class templates. The metrics presented in
this paper have been found to be very useful to find the extent of reusability included
in the code in the form of class and function templates. The main objective of our work
explores the main aspect of software reusability. The most obvious extension of this
work is to analyze the degree to which these metrics correlate with managerial
performance indicators such as testing, maintenance effort and quality.

7. REFERENCES
 [1] Douglas Gregor, Jaakko Jarvi, Jeremy Siek, Bjarne Stroustrup, Gabriel Dos Reis Andrew

Lumsdaine Concepts: Linguistic Support for Generic Programming in C++ OOPSLA, 2006.

 [2] J. Barnard, 'A New Reusability Metric for Object-Oriented Software', Software Quality Journal,

Vol 7 no. 1, 1998.

[3] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra Empirical Study of Object-

Oriented Metrics, JOURNAL OF OBJECT TECHNOLOGY Vol. 5, no. 8, 2006.

 [4] R.Harrison, S.J.Counsell, and R.V.Nithi, “An Evaluation of MOOD set of Object-Oriented
Software Metrics”, IEEE Trans. Software Engineering, Vol. SE-24, no.6, June, 1998, pp. 491-
496.

[5] S. R. Chidamber , C. F. Kemerer, A Metrics Suite for Object Oriented Design, IEEE

Transactions on Software Engineering, Vol .20 no..6, June 1994, pp. 476-492.

[6] W.Frakes and C.Terry, “Software Reuse: Metrics and Models”, ACM Computing Surveys, Vol.

28, no.2, June 1996, pp. 415-435

[7] F.B. Abreu,”The Mood Metric Set”, Proc. ECOOP’95 Workshop on Metrics, 1995.

Parul Gandhi & Pradeep Kumar Bhatia

International Journal of Software Engineering (IJSE), Volume (1): Issue (4) 72

[8] J.Bieman and S.Karunanithi, “Candidate reuse metrics for Object Oriented and Ada Software”,
In Proceedings of IEEE-CS First International Software Metrics Symposium.

[9] K.K.Aggarwal, Yogesh Singh, Arvinder Kaur, Ruchika Malhotra “Software Reuse Metrics for

Object-Oriented Systems”, In Proceedings of ACIS Third International conference on Software
Engineering Research, Management and Applications, 2005.

[10] B.Henderson-sellers, Object-Oriented Metrics, Measures of Complexity, rentice
 Hall,1996.

[11] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, special edition, 2000.

[12] Lorenz, Mark and Jeff Kidd, Object-Oriented Software Metrics, Prentice-Hall, Englewood Cliffs,
N.J., 1994.

[13] McCabe & Associates, McCabe Object-Oriented Tool User's Instructions, user manual, 1994.

[14] N.E.Fenton, Software Metrics, A rigorous approach.Chapman and Hall, New York, 1991.

.

