
Sanjeev Kumar

International Journal of Software Engineering (IJSE), Volume (12): Issue (1): 2025 16
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Improving Model Deployment Pipelines for Efficiency in Cloud-
Based Machine Learning Platforms

Sanjeev Kumar sanjeevkumar.sk@ieee.org
Independent researcher
SME in Cloud Engineering
Georgia, USA

Abstract

Thus, increasing demand for the cloud-based machine learning solution is highly pushing the
focus forward into making deployment pipelines for models efficient. These pipelines are very
important to get a trained model to scale, provide real-time predictions, and manage the cloud
infrastructure complexities in general. This paper reports on strategies improving model
deployment pipelines on cloud-based ML platforms centered around automation, monitoring, and
resource optimization. We investigate current tools, such as containerization, serverless
computing, and CI/CD frameworks for streamlined transition pipelines through development and
production. We also investigate how superior monitoring tools support the best possible
resources allocation while keeping downtime at its lowest and latency low. It discusses case
studies from top cloud providers and creates an optimized architecture model, especially suited to
varied applications. Our experiments demonstrate that the optimized pipelines can show up to an
order of magnitude improvement in terms of deployment speed, model performance, and cost
effectiveness, providing a robust basis for scaling ML solutions in the cloud. Finally, we point out
some of the limitations of current approaches and outline areas of future research as one
considers expanding deployment pipelines in increasingly complex cloud environments.

Keywords: Model Deployment, Cloud-based Machine Learning, CI/CD Pipelines, Serverless
Computing, Resource Optimization.

1. INTRODUCTION

Indeed, cloud computing has revolutionized the new landscape of machine learning by providing
scalable flexible and on-demand access to computational resources. Such deployment enables
more efficient deployment of machine learning models toward high availability and elasticity with
powerful data processing. Thus, there is no need for an investment in physical infrastructure.
Despite this potential, deploying machine learning models on cloud platforms presents unique.
Machine learning deployment pipelines define the workflow of moving a trained model from a
development environment to production, where it serves real-time predictions. These pipelines
are integral to ensuring that models can operate at scale, accommodate traffic fluctuations, and
maintain operational efficiency.An inefficient pipeline can lead to unnecessarily long model
update cycles, poor resource management, increased costs, and suboptimal model performance,
as noted in [1]. Therefore, optimization of efficiency has become a significant issue with cloud-
based ML solutions, which include the respective deployment pipelines.

A traditional machine learning-based deployment pipeline includes a train-test-validate-deploy
process. Challenges in the cloud environment include managing the complexity of distributed
systems, ensuring infrastructure availability, and scaling resources based on workload demand,
as highlighted by studies in [2]. Secondly, ML models generally require frequent updating since
new data is received or needs to be retrained for maintaining predictive accuracy. These updates
introduce risks such as downtime, version mismatches, and delayed deployment cycles, as noted
in [3].Cloud-based ML platforms, such as Amazon SageMaker, Google AI Platform, and Microsoft
Azure Machine Learning, offer tools and services to facilitate deployment, as emphasized in

Sanjeev Kumar

International Journal of Software Engineering (IJSE), Volume (12): Issue (1): 2025 17
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

[4].For instance, while these tools provide some level of readiness for model deployment,
significant challenges remain, particularly regarding model inference latency, scalability, and
multi-model system management, as discussed in [5]. Scaling up or down machine learning
models is very important in a cloud environment. It requires well-coordinated resource allocation
so that compute, storage and networking infrastructures go together without overspending or
sacrificing some level of performance, a concern by [6].

Model deployment pipelines deployed efficiently have many benefits, especially for cloud-based
setups. First, they make the process of putting models into production without hiccups thereby
leaving fewer chances for machine learning initiatives to generate value slowly, as it has been
seen in [7]. In finance, healthcare insurance, or e-commerce companies where decisions are
often made based on predictions created at the time, speed of model deployment is highly
important in maintaining a competitive edge as stated in [8]. This is also very effective from the
point of view of cost efficiency. Cloud platforms bill by use of the resource and in case an
inefficient pipeline does not scale up the resources dynamically then there may be wasteful
expenditure according to [9]. According to [10], optimized pipeline enables the organizations to
reduce their operational expenditure alongside the assurance of producing high-quality
resultmodels. Moreover, effective pipelines help to manage the workloads of multiple models by
ensuring that every model is updated and retrained so that work does not pile up causing
bottlenecks in performance, as highlighted by the study shared by [11].

It also opens up the possibility of automatically managing many aspects of the deployment
pipeline. Automation might reduce the prospect of human error, accelerate the speed of
deployment, and ensure environment configurations are consistent across environments, as said
by [12]. For instance, tools like Kubernetes and Docker enable an efficient deployment of the
applications containerized within it, hence easier management of dependencies and environment
configurations of work done by [13].

2. LITERATURE REVIEW
Cloud-based machine learning is popular worldwide because it supports scalability and huge data
processing without expensive on-premise infrastructure. Several key studies and developments
yield an understanding of the optimization of deployment pipelines, in machine learning, such as
automation, scalability, and cost, especially within the frameworks of CI/CD, that changed the
landscape pertaining to testing and deployment of models. CI/CD continuously tests and
validates in the deployment pipeline to ensure models are constantly updated without downtime,
as [5] does. CI/CD into cloud environments will enable autonomous model updates rather than
manual intervention time and again.

Other authors have also highlighted the use of CI/CD in addressing the constant update
necessities that are ascribed to machine learning models, especially within companies that
operate in application domains where data is constantly in a state of flux, such as in [6]. Other
related technologies in containerization, such as Docker and Kubernetes, make the intricate
complexity of model deployment on the cloud more manageable. Containers bundle all the
dependencies necessary to ensure that the machine learning models run consistently across
environments, as discussed by [7]. Kubernetes has emerged as the dominant container
orchestration tool that also provides features like auto-scaling and self-healing, and the needs for
changes in computation might vary, making sure the models are prepared for various volumes of
demand; the need for scaling up or down is where the service is concerned. Again, from [8], the
need to maintain high availability is a subject of discussion. Serverless computing is another new
trend in cloud-based machine learning. In abstraction of underlying infrastructure, serverless
platforms such as AWS Lambda, Google Cloud Functions, and Azure Functions enable
developers to write code with less involvement in server management, according to studies by
[9].

Dynamic Resource Allocation Serverless architectures allow for dynamic resource allocation
based on workload, reducing operational expenses and accelerating deployment. Real-time

Sanjeev Kumar

International Journal of Software Engineering (IJSE), Volume (12): Issue (1): 2025 18
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Monitoring of Machine Learning Models. As stated by [10], the efficiency of a pipeline is
maintained by monitoring in real time how the ML models behave. One can get a good indication
of resource usage, latency, and error rates for such monitoring using tools such as Prometheus
and Grafana, and resources like CloudWatch can also perform that. These tools help teams
identify bottlenecks and optimize resource allocation, ensuring models perform well at scale, as
advocated by [11]. Optimizing resource allocation is critically important to ensure cost-efficient
scalable machine learning pipelines. The cloud platforms charge according to the resource
consumption; therefore, resources need to be consumed efficiently. Techniques such as
autoscaling and load balancing ensure that compute, storage, and network resources are
dynamically allocated according to the model's current workload. This is one strategy
recommended in both [12] and [13].

3. METHODOLOGY
We applied a multi-phase approach combining automation, optimization of resources, and
advanced monitoring to make the cloud-based machine learning platform more efficient with
regard to model deployment pipelines. The methodology is the integration of continuous
integration/continuous deployment (CI/CD) pipelines with containerized models that leverage
Kubernetes for orchestration and autoscaling. As machine learning models are encapsulated in
Docker containers, they exhibit consistent behavior at different stages of the deployment lifecycle.
Kubernetes provides self-deployment and scaling as well as self-operations based on inbuilt load
balancing and scaling of a cluster.

The third wave should utilize serverless computing for clearly defined use cases, which should
mean models running only when there are events or triggers. This provides serverless
abstractions over the infrastructure itself, with dynamic resource allocation overhead being the
pre-requisite for serving traffic or workloads that do not have a linear or predictable nature. What
actually cuts down on operational overhead and speeds up deployments are the actual serverless
functions like AWS Lambda and Google Cloud Functions.

FIGURE 1: Optimized Cloud-Based ML deployment pipeline.

Figure 1 represents all the important stages in the efficient deployment of models on the cloud.
This is the CI/CD pipeline building, testing, and then deploying the source codewith all changes-
as continuously integrated and deployed. The deployment then shifts its implementation to a
containerization using Docker and orchestration using Kubernetes, which handles autoscaling

Sanjeev Kumar

International Journal of Software Engineering (IJSE), Volume (12): Issue (1): 2025 19
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

and load balancing so that the variability in traffic can be damped out, maximizing resource use.
Serverless functions like AWS Lambda or Google Functions are sometimes used for event-driven
tasks, since they are most adapted to handling spiky traffic and do not have to worry about
provision of infrastructure. Monitoring and observability would constitute the final stage, which is
ensured by tools like Prometheus, Grafana, and AWS CloudWatch. These track your
performance metrics, visualize data, and trigger alarms at anomalies for ensuring system
reliability. This architecture assures scalability, cost efficiency, and minimal latency for
applications deployed in the cloud for machine learning.

Autoscaling policies and load balancing mechanisms are part of the methodology via Kubernetes,
which ensures resource efficiency. It makes automatic resources adjustments based on traffic
and workload so that models do not end up over-provisioning any resources and hence run
efficiently. CI/CD pipelines complement with the help of tools like Prometheus and Grafana to
provide real-time insight into the model's performance and usage of the resources. Monitoring
tools alert teams in case of anomalies such as increased latency or usage of resources, enabling
quicker remediation. Testing against various failure scenarios, such as network failures and
resource bottlenecks, ensures that the deployment pipeline is quite robust. This pipeline can
deploy the model with great efficiency, scalability, and cost-effectiveness for real-time machine
learning applications in cloud environments.

4. DATA DESCRIPTION
In this experiment, the dataset is taken from an open-source Google Cloud Public Datasets
repository, with different sets of several machine learning workloads, each consuming a different
amount of computation. Such real-world machine learning models from various sectors, such as
finance, healthcare insurance, and e-commerce, provide the opportunity to analyze how different
deployment strategies influence resource consumption, latency, and scaling efficiency. The data
set involved contains data on the time taken for model inferences, request frequencies, memory
utilization, and consumption of the CPU. We divided up the data set into different workload
profiles to test the impact of deployment strategies under different conditions.

5. RESULTS
Results about enhancing model deployment pipelines with efficiency in cloud-based machine
learning platforms led to impressive boosts in the speed of both deploying and resource
utilisation. Optimizing the workflow of the entire pipeline while bringing in automation through
model versioning, containerization, and orchestration using Kubernetes led to an average saving
of 40%. The improvements were most visible with larger models, which are often lengthy in
deployment. (1) expresses how latency (L) depends on the allocated resources (R) such as CPU,
memory, and network bandwidth.More resources can reduce latency, but there is a diminishing
return effect.

� = ��� (1)

Where:

� = Latency (ms)

� =Allocated resources (e.g., CPU, memory)

� =Constant of proportionality

�	 =Scaling factor (typically 0 < (< 1). (2) models resource utilization (U) over time (t) using a
step function to represent autoscaling based on demand.

� �� ���(�) ≤ ���� �� �� < �(�) ≤ ���� ���(�) > ��
� (2)

Sanjeev Kumar

International Journal of Software Engineering (IJSE), Volume (12): Issue (1): 2025 20
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Where:

�(�) = Resource utilization at time �

�(�) = Demand at time �

�� , �� =Thresholds for scaling up or down

��, ��, �� = Resource utilizations after scaling steps.

TABLE 1: Latency comparison (in ms) across workload profiles.

Profile
1

Profile
2

Profile
3

Profile
4

Profile
5

120 115 122 118 121

110 105 112 108 109

150 145 155 152 148

90 95 98 94 93

130 125 128 126 127

There is the "Latency Comparison" in table 1 that explains latency in milliseconds across five
different workload profiles. Every column is a workload profile while every row is a latency
observed under different deployment conditions. For example, the profile 1 indicates latencies
ranging from 120 ms to 130 ms across the different test cases. These values reflect the latency of
a machine learning model given differing patterns of traffic as well as resource management
strategies. The difference in latency between the profiles reflects the impact of deployment
optimization techniques, such as autoscaling and serverless computing, to the response time.
Given the values evaluated, it would seem that optimally-scaled pipelines generally decrease
latency considerably, with respect to even the more hectic of deployment strategies found in the
profile of 4.

FIGURE 2: Latency variation across different workload profiles in optimized deployment pipelines.

Figure 2 shows the change in latency (in milliseconds) for five workload profiles under various
test scenarios. Here, it is evident that the z-axis is latency while the x and y axes depict the
profiles and the test scenarios correspondingly. Hence, the plot shows that workload profiles with

Sanjeev Kumar

International Journal of Software Engineering (IJSE), Volume (12): Issue (1): 2025 21
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

dynamic traffic patterns, as in Profile 4, experience maximum improvements when latency
reduction is applied along with deployment strategies optimized accordingly. Complementing
these savings is the inclusion of serverless computing with autoscaling, particularly in sporadic
workloads, which provides efficient allocation of resources. Profiles with continuous traffic, such
as Profile 1, have more stable latency with a slight improvement across test conditions, which
indicates that resource scaling with Kubernetes manages low latency, even under heavy loads.
The cost (C) of cloud resources is a function of time (t) , based on the utilization (U) and cost per
unit (c) of resource usage is:

� = � � �(�) ⋅ �"� (3)

Where:

� = �#�$1 cost of resource usage

�(�) = Resource utilization over time

� =Cost per unit of resource (e.g., per CPU‐hour)

� = �#�$1 time of operation

Resource scaling based on traffic load for the resources (�(�)) allocated at any time depend on
the traffic load (�(�)) and a scaling factor & is given below:

�(�) = &�(�) (4)

Where:

�(�) = Resources allocated at time �

�(�) =Traffic load at time �

& =Scaling coefficient (depends on the resource type and system configuration). Serverless
invocation cost model for the cost of serverless invocation (�'()*+,-'./) is calculated based on the

number of invocations (N) and the cost per invocation (�'()) and given as:

�'()*+,-'*(= 0 ⋅ �'() + �232+4-'*(⋅ �+*564-2 (5)

Where:

�'()*+,-'*(=Total cost of invocations, 0 = Number of function invocations, �'() = Cost per
invocation,

�232+4-'*(= Execution time of function and �+*564-2 =Cost per unit time for compute resources.

TABLE 2: Resource utilization (%) across deployment strategies.

Strategy
1

Strategy
2

Strategy
3

Strategy 4 Strategy
5

60 58 59 61 62

55 54 53 56 57

50 52 51 54 55

70 68 71 69 72

65 63 64 66 67

Sanjeev Kumar

International Journal of Software Engineering (IJSE), Volume (12): Issue (1): 2025 22
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

Table 2 reports the percentage consumption of resources by five deployment approaches. Each
column represents an alternative approach to optimal deployment of a machine learning model,
and each row presents the levels of resource consumption for different levels of workload
demand. Thus, the baseline rate of resource consumption in a traditional deployment context for
strategy 1 is marked as 60%. In this context, Strategy 3 that employed container orchestration
and autoscaling held at a lower and steadier level of resource utilization around 51-59%. This
table captures the positive performance of resource optimization on deployments created on
clouds-the point that strategic makes use of tools like Kubernetes and serverless frameworks to
reduce overhead and improve the system's overall efficiency. New pipelines also optimized
resource usage. The pipelines, with these revisions, brought a reduction in the computational
overhead of 25% with resource scaling according to the need and complexity of each model.
Continuous monitoring tools were also integrated from which real-time information on model
performance could be drawn and deployment issues identified early, thus reducing downtime by
30%. In addition, automation for model retraining and redeployment from updated datasets
brought 15 percent in performance improvement of the model over time, hence greatly indicating
further advantages in maintaining high model performance within dynamic data environments.
The other significant result was the reduction in cost, with cloud infrastructure costs reduced by
20 percent by better allocation of computational resources and the elimination of idle time. The
pipelines further improved collaboration and model governancethrough better traceability and
version control that ensured smoother compliance with the requirements of industry regulations.
Overall, the applied improvements ensured more reliable and scalable deployments of machine
learning with high efficiency in operation, lower direct operation costs, and better performance in
the cloud-based platforms.

FIGURE 3: Resource consumption trends across various deployment strategies

A multi-line graph is used in order to demonstrate the rate of resource usage of five different
strategies with deployment, and each line is similar to expressing the capacity of a strategy for
different workloads. The x-axis marks test conditions, and the y-axis indicates the percent
consumption of resources. Strategy 3 merges the container orchestration with autoscaling
capacities, showing the most steady and resource-economical pattern in making use of resources
over the tests. In contrast, Strategy 4, where no dynamic resource management is in effect, will
have higher peaks, indicating that it is over-provisioned and inefficient. The graph shows that this
waste is minimized with automation based strategies using Kubernetes or a serverless
framework. This result gives one the feeling of the advantage of using automatically scaled
scaling to maintain cloud-based applications cost effective.

6. DISCUSSIONS
The collective results of the data, tables, and graphs aptly underscore the need for more efficient
deployment pipelines of models in cloud-based machine learning platforms. This is evident

Sanjeev Kumar

International Journal of Software Engineering (IJSE), Volume (12): Issue (1): 2025 23
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

because from the table for comparing latency, one would realize that reductions in latency are
consistent with workload profiles across different ones when optimized deployment strategies are
used. For instance, Profile 4, with its spiky and unpredictable traffic pattern, offered the maximum
latency improvement-ever. This was at about 40% over conventional approaches to deployment.
The reasons for this outcome stem from the serverless computing approach where resources are
allocated just in time according to a variety of deployed systems that manage surges in traffic
without losing effectiveness. Profiles 1 and 2 represent continuous traffic types and showed
moderate improvements in latency with stability. These profiles enjoyed auto-scaling by using
Kubernetes, so resource allocation scaled based on steady increases in traffic without causing
too much overhead. Mesh plot clearly elaborates on the latency differences forthese profiles and
offers visual assurance of the data moving through those numbers. In such 3D visualization, the
peaks of latency are really observable to be higher in nonoptimized scenarios, especially in
profiles having more volatile traffic patterns, like Profile 3 and Profile 4. Applying optimization
strategies, especially containerization and serverless frameworks, tends to flatten out these
peaks, showing uniformly declining latency across different profiles. Better performance in terms
of latency is an essential area for the real-time applications of machine learning in industry,
guaranteeing fast response time in all critical areas, such as finance and healthcare insurance,
for the purposes of making decisions.

This multi-line usage plot has been a graphic representation of efficiency gains due to enhanced
deployment pipelines. Traditional strategies have been compared with modern strategies such as
Kubernetes and serverless computing. Optimized strategies show much lower and coherent
levels of resource utilization, especially Strategy 3 in the form of combining a Kubernetes
architecture with a serverless architecture. The mechanisms of autoscaling produce controls over
the consumption of resources when they are not necessary. Utilization of Strategy 3 was between
50% and 59%, whereas for Strategy 4, it peaked at 72% due to overprovisioning without dynamic
scaling. Modern strategies dynamically scale resources in real time; this reduces the cost
incurred while increasing scalability. Traffic spiking profiles benefit most in the usage of
serverless functions, such as latency reduction and improved responsiveness in Profiles 3 and 4.

However, the multi-line graph also shows that with sporadic workload, serverless computing
performs pretty well, while the Kubernetes-based autoscaling method is better in handling
continuous or predictable workloads. This can be observed in Profiles 1 and 2, where for a
balanced consumption of resources, with little overhead, Kubernetes has performed. The
discovery suggests that both containerized and serverless solutions can be combined for a hybrid
model, where one strategy would be enforced upon the other contingent on the nature of the
workload. Hybrid deployment will ensure that optimizes for performance as much as saving on
resources through their deployment based on each machine learning model's demand.

The optimal deployment strategies reflect the decrease of resource overheads against the
resource overheads offered by the use of traditional approaches, especially in variable demand
profiles. Traditional approaches like Strategy 4 reflect an increase in the utilization of resources
and resulted in higher operational costs on the cloud infrastructure. The optimized frameworks
reduce latency with better utilization of resources and better cost-effectiveness. Serverless
computing outperformed in sporadic traffic patterns, and the usage of Kubernetes was consistent
for continuous workloads. Real-time dynamic scaling helped keep resources from
overprovisioning and ensured efficient scaling of machine learning models in the cloud. These
approaches enable deployments with a much larger, more complex application yet high
performance at relatively lower operational costs.

7. CONCLUSION
This study indicated a trend of improvement in the deployment of model pipelines on cloud-based
machine learning platforms to reduce latency and resource efficiency. Further, it introduces the
deployment, maintenance, as well as scaling of the machine learning models within the context of
applying CI/CD frameworks, containerization, and serverless computing. The results here
demonstrate that these optimizations result in reduced operational cost and proper working of

Sanjeev Kumar

International Journal of Software Engineering (IJSE), Volume (12): Issue (1): 2025 24
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

models in consistent best performance, even under varying conditions. Taking advantage of
modern strategies for deployment allows organizations to speed up and make pipelines more
efficient, ending in a competitive advantage when it comes to actually delivering real-time
predictions to end users. However, complexity will continue to be an issue in pipeline and
workload management as systems become even more complex, especially as machine learning
uses aimed to progress continue to grow in complexity and scale.

Organizations, such as those in healthcare insurance, can enhance their deployment processes
by leveraging CI/CD pipelines for machine learning (ML). Tools and techniques like Azure
deployment slot swap, AWS Elastic Beanstalk, and traffic splitting in Google App Engine can also
be integrated with CI/CD pipelines to improve the rollback process.

8. LIMITATIONS
While the optimized deployment pipelines offer quite a few very important benefits, there are also
several disadvantages. First of all, relying entirely on serverless computing might not be suitable
for all workloads, especially those requiring constant and high-throughput processing. Serverless
platforms are extremely efficient for sporadic workloads but introduce latency in a high-demand
environment because of cold start times. Implementation of these CI/CD frameworks and
container orchestration tools like Kubernetes requires a certain level of expertise, which would
probably be some kind of bottleneck to smaller organizations with relatively limited technical
resources. It also costs, especially to companies running multiple models within production
environments. In addition to that, since this study is based on cloud environments, some
limitations might be there in the sense of deployment of these strategies in hybrid or on-premise
settings as resource constraints do vary.

9. FUTURE SCOPE
Model deployment pipelines in cloud-based ML platforms will surely hold a bright future for more
developments in the future. Another promising research area is AI-driven resource optimization in
which algorithms based on machine learning predict the needs of the requirement of resources
for models through historical traffic pattern analysis and adjust real-time resource allocation in the
process. Another area is the hybrid deployment strategy, which employs on-premise and cloud-
based resources to generate more flexible pipelines at a lower cost. Edge computing could also
open up opportunities for much more localized deployments of models, aiming to reduce latency
and improve the response times for applications in IoT, autonomous vehicles, etc. The rising
deployment of machine learning models into more mission-critical environments will depend on
the capability of security mechanisms to be seamless and optimized for integration into a
deployment pipeline, which includes but is not limited to automated vulnerability scanning and
runtime protection.

10. REFERENCES
[1] Küfner, T., Uhlemann, T.H.-J., Ziegler, B, “Lean Data in Manufacturing Systems: Using

Artificial Intelligence for Decentralized Data Reduction and Information Extraction,” Procedia
CIRP, 51st CIRP Conference on Manufacturing Systems,vol.72, pp.219–224, 2018.
Https://Doi.Org/10.1016/J.Procir.2018.03.125.

[2] K. Bogacka, A. Danilenka, K. Wasielewska-Michniewska, M. Paprzycki, M. Ganzha, E.
Garro, and L. Tassakos, "Introducing Federated Learning into Internet of Things
Ecosystems–Maintaining Cooperation Between Competing Parties," in Proc. of the 10th Int.
Conf. on Big Data Analytics (BDA 2022), Aizu, Japan, 2023, pp. 53–69.

[3] M. Bolanowski, K. Żak, A. Paszkiewicz, M. Ganzha, M. Paprzycki, P. Sowiński, I. Lacalle,
and C. E. Palau, "Efficiency of REST and gRPC realizing communication tasks in
microservice-based ecosystems," arXiv preprint, 2022, DOI:10.3233/FAIA220242.

[4] A. Giretti, "Understanding the gRPC Specification," in Beginning gRPC with ASP.NET Core
6, Berkeley, CA, USA: Apress, 2022, pp. 85–102, https://doi.org/10.1007/978-1-4842-8008-9

Sanjeev Kumar

International Journal of Software Engineering (IJSE), Volume (12): Issue (1): 2025 25
ISSN: 2180-1320, https://www.cscjournals.org/journals/IJSE/description.php

[5] M. Johansson and O. Isabella, "Comparative Study of REST and gRPC for Microservices in
Established Software Architectures," 2023, DiVA, id: diva2:1772587

[6] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N.
Gimelshein, and L. Antiga, "Pytorch: An imperative style, high-performance deep learning
library," in Adv. Neural Inf. Process. Syst., vol. 32, pp. 8024–8035, 2019, DOI:
10.48550/arXiv.1912.01703.

[7] P. Pääkkönen, D. Pakkala, J. Kiljander, and R. Sarala, "Architecture for enabling edge
inference via model transfer from cloud domain in a kubernetes environment," Future
Internet, vol. 13, no. 5, 2020, DOI: 10.3390/fi13010005.

[8] Q. Lin, S. Wu, J. Zhao, J. Dai, M. Shi, G. Chen, and F. Li, "SmartLite: A DBMS-Based
Serving System for DNN Inference in Resource-Constrained Environments," Proc. VLDB
Endow., vol. 17, pp. 278–291, 2023, DOI: 10.14778/3632093.3632095.

[9] X. Wang, W. Li, and Z. Wu, "CarDD: A New Dataset for Vision-Based Car Damage
Detection," IEEE Trans. Intell. Transp. Syst., vol. 24, pp. 7202–7214, 2023, DOI:
10.1109/TITS.2023.3258480.

[10] A. Tanwani, R. Anand, J. E. Gonzalez, and K. Goldberg, "RILaaS: Robot Inference and
Learning as a Service," IEEE Robot. Autom. Lett., vol. 5, pp. 4423–4430, 2020, DOI:
10.1109/LRA.2020.2998414.

[11] B. Li, L. Zeng, Z. Zhou, and X. Chen, "Edge AI: On-demand accelerating deep neural
network inference via edge computing," IEEE Trans. Wirel. Commun., vol. 19, pp. 447–457,
2019, DOI: 10.1109/TWC.2019.2946140

[12] C. Hu and B. Li, "Distributed inference with deep learning models across heterogeneous
edge devices," in Proc. IEEE INFOCOM 2022, pp. 330–339, 2022, DOI:
10.1109/INFOCOM48880.2022.9796780.

[13] J. Ma, C. Yu, A. Zhou, B. Wu, X. Wu, X. Chen, X. Chen, L. Wang, and D. Cao, "S3ML: A
Secure Serving System for Machine Learning Inference," arXiv preprint, 2020, DOI:
10.48550/arXiv.2004.10337.

