
Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 40

Using Meta-modeling Graph Grammars and R-Maude to
Process and Simulate LRN Models

Nardjess Dehimi ndehimi@yahoo.fr
Computer Science Department/MISC Laboratory
University Mentouri Constantine
Constantine, 25000, Algeria

Allaoua Chaoui a_chaoui2001@yahoo.com
Computer Science Department/MISC Laboratory
University Mentouri Constantine
Constantine, 25000, Algeria

Abstract

Currently, code mobility technology is one of the most attractive research areas. Numerous
domains are concerned, many platforms are developed and interest applications are realized.
However, the poorness of modeling languages to deal with code mobility at requirement
phase has motivated researchers to suggest new formalisms. Among these, we find Labeled
Reconfigurable Nets (LRN) [9], This new formalism allows explicit modeling of computational
environments and processes mobility between them and It allows, in a simple and an intuitive
approach, modeling mobile code paradigms (mobile agent, code on demand, remote
evaluation). In this paper, we propose an approach based on the combined use of Meta-
modeling and Graph Grammars to automatically generate a visual modeling tool for LRN for
analysis and simulation purposes. In our approach, the UML Class diagram formalism is used
to define a meta-model of LRN. The meta-modeling tool ATOM3 is used to generate a visual
modeling tool according to the proposed LRN meta-model. We have also proposed a graph
grammar to generate R-Maude [22] specification of the graphically specified LRN models.
Then the reconfigurable rewriting logic language R-Maude is used to perform the simulation
of the resulted R-Maude specification. Our approach is illustrated through examples.

Keywords: Code Mobility, Modeling Mobility, Labeled Reconfigurable Nets, Mobile Agent, Graph
Transformation, R-Maude, ATOM3 Tool, Maude.

1. INTRODUCTION
Indeed, the formal tools which have been used to model and analyze classical systems are
unable to deal with code mobility system properties [8]. Many studies on formal tools have
attempted to extend classical tools to deal with code mobility properties. Among these studies
we can mention process algebra based models (π-calculus [13], join-calculus [7], HOπ-
calculus [16], for example) and state transition based models such as Petri nets. Different
works tend to propose methodologies and approaches ([6], [14], [17]…), to prevent ad-hoc
development for code mobility software. In effect, these approaches are mostly informal, to
deal with this problem, some high level Petri Nets have been proposed. The most known are
Mobile Nets (variant of colored Petri nets) [1]. To fit mobile Petri nets to specific mobile
systems, various extensions have been proposed such as Elementary Object Nets [18],
labeled reconfigurable nets [9], Nested Petri Nets [10] [11], HyperPetriNets [4], … In [3], the
authors proposed an approach for transforming mobile UML Statechart diagrams to Nested
nets models for analysis purposes. It produces highly-structured, graphical, and rigorously-
analyzable models that facilitate early detection of errors like deadlock, livelock, etc … Their
approach is based on graph transformation since the input and output of the transformation
process are graphs. the meta-modeling tool ATOM3 is used. In this study we will deal with the
transformation of LRN models into their equivalent R-Maude specification for analysis
purpose.

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 41

The rest of the paper is organized as follows. In section 2, we introduce the key concepts that
are dealt with in our research. In section 3 we describe our approach which consists of
transforming labeled reconfigurable nets models into their equivalent R-Maude specifications.
In section 4, we illustrate our approach using examples. Section 5 presents the prototype R-
Maude using one of the 2 examples given in section 4. In section 6, we will round off our
paper by suggesting some concluding remarks and putting forward the future perspectives for
further research.

2. Background
In the following subsections we consider the main concepts and tools used in this paper and
give further references for the reader.

2.1 Labeled Reconfigurable Nets
The formalism “labeled reconfigurable net” [9] is dedicated to model code mobility systems
[8]. The authors proposed to model mobility in an intuitive and explicit way. Mobility of code (a
process or an agent) will be directly modeled through a reconfiguration of the net. The
formalism allows adding and deleting places, arcs, and transitions at run time. For more
details, the reader can refer to [9].

2.2 Rewriting Logic and Maude
Rewriting logic [12] has been introduced by José Meseguer as logic for describing concurrent
systems. It is implemented by several languages such as Maude [12]. The latter is a
specification and programming language. It is simple, expressive and has a high-performance
implementation. Maude offers three types of modules: Functional modules, System modules
and Object-Oriented modules. It offers full Maude to support that; furthermore, it has its own
model-checker that is used in checking system’s properties. For more details the reader can
refer to [12].

2.3 Graph Transformation and ATOM3
Graph grammars [15] can be used to describe graph transformation or to generate sets of
valid graphs or to specify operations on them. Graph grammars are composed of production
rules, each of them, having graphs in their left and right hand sides (LHS and RHS). Several
tools for graph transformation have been proposed in the literature. Among these tools, we
can cite ATOM3 “A Tool for Multi-formalism and Meta-Modeling" [2]. The two main tasks of
ATOM3 are meta-modeling and model transformation. For more details, the reader can refer
to [15].

2.4 Reconfigurable Maude
Maude [19] is a high-level language and high performance system supporting executable
specifications and declarative programming in rewriting logic [20].

Maude has been extended to deal with some aspects not considered in former version.
Maude [21] is a system to specify and analyze real time and hybrid systems. Mobile Maude
[6] is an extension of Maude for mobile systems specification.

An encoding of Labeled Reconfigurable Nets in a Maude-based language has been proposed
[22]. The inspired language is called “Reconfigurable Maude” (R-Maude). It profits from the
power of Maude (as a meta-language). Maude was extended to support the translation of
LRN and their simulation. R-Maude enriches Maude with new kind of rewriting rules. These
rules are called Reconfigurable rules (R Rules). The semantic of these rules is similar to that
of Reconfigurable transition in LRN. When a rule is executed, the R-Maude specification will
be updated in different ways, this will depend on the label associated with this rule.

A specification in R-Maude is a set of Reconfigurable rewrite theories (R-theories). An R-
Theory RT is a triple (Ω, E, R) as like a rewrite theory. The difference resides in the set R. R
will contain two kinds of rules: standard Rules S-Rules (well known rules of Maude) and
Reconfigurable rules R-Rules. An R-Rule rλ is composed of a label λ=<d, RT1, RT2, S> and
a rule t�t’. In the label λ, RT1 and RT2 are two R-Theories; S is a segment of a theory, and d
a specific parameter. The segment S can be a set of sorts, rules, variables, operators that can
be an R-theory or not. When rλ is fired, the specification can be updated in several ways.

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 42

Updating specification means that their R-theories will be changed. This change depends on
λ. In general, when rλ is fired, the segment S will move from RT1 to RT2 or the inverse. The d
parameter can be used to express direction of this move. For more details the reader can
refer to [22].

3. OUR APPROACH
The steps of our approach are as follows.

3.1 Meta-Modeling Of LRN (Labeled Reconfigurable Nets)
To build models of LRN formalism in AToM3, we have to define a meta-model for LRN. The
meta-formalism used in our work is the UML Class Diagrams and the constraints are
expressed in Python code. Since LRN consists of places, transitions, and arcs from places to
transitions and from transitions to places, we have proposed to meta-model LRN two Classes
to describe Places and Transitions, and two associations for arc-in and arc-out as shown in
FIGURE 1. We have also specified the visual representation of each class or association.
Given our meta-model, we have used AToM3 tool to generate a visual modeling environment
for LRN models. FIGURE 2 shows the generated LRN tool and a dialog box to edit a
transition. Each transition has two attributes (label and nom, the attribute label is defined in
the case of reconfigurable transition).

FIGURE 1: LRN Meta-Model

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 43

FIGURE 2: Tool bar of the Generated tool to process LRN models

3.2 The Graph Grammar Generating R-Maude Specifications from LRN Models
In order to simulate LRN models, we translate them into their equivalent representations in R-
Maude syntax. In this section we show how to use the modeling environment generated in the
previous section to generate R-Maude specification. We do this by defining a Graph Grammar
to traverse the LRN model and generates the corresponding code in R-Maude. The graph
grammar has an initial Action that is used to create the file where the code will be generated.
This action decorates also all the Transition and Place elements in the model with temporary
attribute according to the conditions specified in the rules. In Transition elements, we use two
attributes: current and visited. The current attribute is used to identify the transition in the
model whose code has to be generated, whereas the visited attribute is used to indicate
whether code for the transition has been generated or not. In Place elements, two attributes
are used: fromVisited and toVisited. The fromVisited attribute is used to indicate whether this
place is processed as input place whereas the toVisited attribute is used to indicate if this
place is processed as output place.

In our graph grammar, we have proposed seven rules (see FIGURE 3) which will be applied
in ascending order by the rewriting system until no more rules are applicable. We are
concerned here by code generation, so the grammar rules will not change the LRN models.
These rules are described as follows:

Rule1: lefthandside (priority 1): is applied to locate a place (not previously processed) related
to current transition with an input arc, and generates the corresponding R-Maude
specification.
Rule2: separate (priority 2): is applied to generate R-Maude code which separates LHS and
RHS of the equivalent rewriting rule.
Rule3: righthandside (priority 3): is applied to locate a place (not previously processed) which
is related to current transition with an output arc, and generate the corresponding R-Maude
specification.
Rule4: condition (priority 4): is applied to generate the appropriate R-Maude code depending
on the condition of the transition, and decorates the transition as visited.
Rule5: InitPlace (priority 5): is applied to locate and initialize temporary attributes in places for
processing the next transition.
Rule6: SelectTransition (priority 6): is applied to select an LRN transition not previously
processed and generates its equivalent rewriting rule in R-Maude.

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 44

Rule7: terminate (priority 7): is applied to perform the writing of the generated
R-Maude file and closes it.

The graph grammar has also a final action that erases the temporary attributes from the
entities and closes the output file.

FIGURE 3: The graph grammar rules

4. Examples

4.1 Example 1: LRN With a Static Agent

This example is about a computational environment E1. E1 contains a unique static agent
SA1 that execute infinite loop. SA1 requires a non-transferable resource bound by type PNR2

<ANY>

<ANY>

<ANY>

<ANY>

<ANY>

<ANY>

2

3

1

LHS

RHS

current = = 1

visited = = 0

current = = 1

visited = = 0

fromVisited = = 0

fromVisited = 1

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

2

3

1

::====

 1: . Priority.lefthandside1

LHS RHS

current = = 2

visited = = 0

current = 0

visited = 1

::====

: 4 . Prioritycondition-4.

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

LHS RHS

current = = 2

visited = = 0

current = = 2

visited = = 0
toVisited = = 0

 toVisited = 1

::====

: 3 . Priorityrighthandside-3.

<ANY>

<ANY>

<ANY>

<ANY>

<ANY>

3

2 1

<COPIED>

<COPIED>

<COPIED>

<COPIED>

<COPIED>

3

2

1

LHS RHS

current = = 0

visited = = 0

current = 1

visited = = 0

::====

: 6 Transition. Priority -6.

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

LHS RHS

current = = 1

visited = = 0

current = 2

visited = = 0

::====

: 2 . Priorityseparate -.2

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

LHS RHS

fromVisited = = 1

or

toVisited = = 1

fromVisited = 0

toVisited = 0

::====

: 5 InitPlace. Priority -5.

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

Final==0

::====

<ANY>

<ANY>

1
<COPIED>

<COPIED>

1

:7 . Priorityeattermin -7.

RHS RHS LHS

Final==1

RHS LHS

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 45

to execute a32. The system will be modeled as a labeled reconfigurable net LRN. FIGURE 4
presents the graphical model of this example created in our tool.

FIGURE 4: The LRN model of the example

Translating LRN Model to R-Maude Specification
This step has graphical representation of an LRN model as input. It consists of translating this
graphical representation into its equivalent R-Maude specification using the graph grammar
defined in the previous section. To realise this translation, the user have to execute the graph
grammar previously defined.

The result of this translation given in FIGURE 5, is the file env2-system.Maude which contains
the specification of the LRN model of FIGURE 4.

FIGURE 5: Generated R-Maude specification env2-system.maude

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 46

4.2 Example 2: LRN With a Mobile Agent

In this example, E1 and E2 are two computational environments. E1 contains two agents, a
mobile agent MA and a static agent SA1; E2 contains a unique static agent SA2. The three
agents execute infinite loops. MA executes actions {a11, a12, a13 }, SA1 executes actions
{a21, a22, a23}, and SA2 executes actions {a33, a32}. To be executed, a11 require a
transferable resource TR1 and a nontransferable resource bound by type PNR1 which is
shared with a21. a12 and a22 share a transferable resource bound by value, and a13 and
a23 share a non-transferable resource NR1. In E2, SA2 requires a non-transferable resource
bound by type PNR2 to execute a32. PNR2 has the same type of PNR1. The system will be
modeled as a labeled reconfigurable net LRN. LRN contains two environments E1 and E2
that model the two computational environments. In this case the unit A that models the mobile
agent A will contain a reconfigure transition rt < A, E1, E2, ψ, β >; such that:

1. E1 =(RP1, GP1, U1, A1); RP1 contains at least four places that model the four resources.
Let TR1, NR1, PNR1 and VTR1 be these places. GP1 contains at least a free place PA1
modeling that A can be received, and U1={A}.
2. E2=(RP2,GP2, U2, A2); RP2={PNR2}, GP2={PA2}.
3. ψr={TR1}, ψc={VTR1};
4. β={(PA2, str1), (PNR2, a11), (NR1, a13)}.

FIGURE 6: LRN MA-model before firing rt

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 47

FIGURE 7: LRN MA-model after firing rt

Translating LRN Model to R-Maude Specification
The model of the LRN associated to E1 of FIGURE 6 is too huge in ATOM3, so because of
the lack of space, only its R-Maude specification generated by the execution of the graph
grammar on the ATOM3 tool and saved in the file env1-system.Maude,is given by FIGURE 8.

FIGURE 8: Generated R-Maude specification env1-system.maude

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 48

5. PROTOTYPING R-MAUDE
R-Maude has been prototyped [22]. The prototype is a system composed from a text editor
and an interpreter. The editor is used to enter the specification and commands which have
been automatically generated by the execution of the graph grammar on the models to
experiment, using ATOM3 tool. The interpreter executes commands and updates
specifications. The system was experimented on a LAN (Local Area Network), consisting of a
few machines. The system is installed on all hosts. So the specifications are edited
everywhere. On every host, commands can be executed. The execution of commands will
create the system dynamic. This dynamic can be shown as migration of specification’s part
(or else the whole) through the LAN.

The specifications (or their parts) are transferred in messages between machines, using
UDP protocol. The interpreter realized for R-Maude can be used to interpret Maude
specifications. The major different is that in this newest interpreter, the interpretation of R-
Rules is added. The label of an R-Rule precedes the rule, and it has the form [MT|L| IP@| S].
Semantics of these parameters is : MT: mobility type (MA, COD, REV, …), L: a multi-set of
operations and rules to be moved, cloned or removed from or to the local host, IP@: IP
address of distant host, S: sources to move or to remove from or to the local host. When
specifications (or part of them) are moved, some resources (R) necessary to firing some rules
become far (on another host). IP address of the far host appears with the concerned resource
in the form: R[IP@].

The newest is that R-transition will be translated in R-Rules.
We consider that the two environments E1, E2 are specified as two specifications on two
hosts (Host1 and Host2). Host1 has the IP address: 192.168.0.1, and Host2 has the IP
address: 192.168.0.2.
On Host1, the specification is given by FIGURE 8.
and on Host2, we have the specification :
mod E2
sort Place Marking .
subsort Place << Marking .
op _,_ : Marking Marking ->Marking .
ops PA1,PA2,P31,P32,PNR2 : -> Place.
rl [str3] : PA2=>P31 .
rl [a31] : P31=>P32 .
rl [a32] : P32, PNR2=>PA2 .
endmod
As an example of a command, we have “rw PA1” on Host1. The execution of this command
will produce respectively on Host1, and Host2 the two specifications:
mod E1
sort Place Marking .
subsort Place << Marking .
op _,_ : Marking Marking ->Marking .
ops PA1,PA2,P21,P22,P23,VTR1,PNR1,NR1:->Place.
rl [str2]: PA2=>P21 .
rl [a21] : P21, PNR1=>P22 .
rl [a22] : P22, VTR1=>P23 .
rl [a23] : P23, NR1=>PA2 .
endmod.

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 49

And in Host2 the produced specification s
mod E2
sort Place Marking .
subsort Place << Marking .
op _,_ : Marking Marking ->Marking .
ops PA1,PA2,P31,P32,PNR2 : -> Place.
ops VTR1, TR1:-> Place.
ops P11,P12,P13,P14:->Place.
rl [str3] : PA2=>P31 .
rl [a31] : P31=>P32 .
rl [a32] : P32, PNR2=>PA2 .
rl [str1] : PA1=>P11 .
rl [rt][MA|192.186.0.2|{{P11-P14},{str1-a13}}|{TR1,VTR1}] :P11=>P12 .
rl [a11] : P12, TR1, PNR2=>P13 .
rl [a12] : P13, VTR1=>P14 .
rl [a13]: P14,NR1[192.168.0.1]=>PA1.
Endmod
Finally, the state of the marking will be : “P12” on the Host2. At this point, the two
specifications continue their execution on the two hosts where they reside.

6. CONCLUSION

In this paper, we have proposed an approach and a tool in dealing with the transformation of
LRN models to their equivalent R-Maude specifications automatically. This transformation
aims to make it possible to achieve the verification of properties of systems modeled using
LRN, since the latter do not have tools for analysis and verification. Our approach is based on
the combined use of meta-modeling and graph grammars wherein ATOM3 is used as a graph
transformation tool.

This study opens up new perspectives for future research. In our forthcoming studies, we plan
to hide the steps of the Simulation and thereby spare the user from invoking R-Maude
language manually and manipulating the textual version of the simulation result. Thus, the
latter will be returned in graphical way to LRN model structure. We plan also, to focus on
modeling and analyzing aspects. In the modeling aspects, our concern will be much more on
handling problems such as those of modeling multi-hops mobility, process states during
travel, birth places and locations. As for the analysis aspect, we are currently working on a
denotational semantics for LRN. It is to be underlined that the current R-Maude can be used
only to simulate Models. Future works will handle specification analyzing, so we plan to
integrate the LTL Maude Model checker in our tool to perform some verification of mobile
systems properties, so that Maude model-checker will be adapted to reconfigurable Maude.
For LRN, many extensions have been proposed, in [23], authors have proposed “Temporal
LRN” and in [24] they have suggested “Coloured LRN”. In line with these suggestions, we
focus on using R-Maude to simulate models of these extensions,

7. REFERENCES

[1] A. Asperti, N. Busi. “Mobile Petri Nets”. Technical Report UBLCS-96-10, Department of
Computer Science University of Bologna, May 1996.

[2] AToM3 Home page, version 3.00, http://atom3.cs.mcgill.ca.

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 50

[3] M. R. Bahri, A. Hettab, A. Chaoui, E. Kerkouche. “Transforming Mobile UML
Statecharts Models to Nested Nets Models using Graph Grammars: An Approach for
Modeling and Analysis of Mobile Agent-Based Software Systems“. In Proccedings of
IEEE SEEFM2009, the 2009 Fourth South-East European Workshop on Formal
Methods. Thessaloniki, Greece,

[4] Dec 5th, 2009. pp. 33-39,

[5] M.A. Bednarczyk, L. Bernardinello, W. Pawlowski, L. Pomello. “Modeling Mobility with

Petri Hypernets”. 17th Int. Conf. on Recent Trends in Algebraic Development
Techniques, WADT’04. LNCS vol. 3423, Springer-Verlag, 2004.

[6] D. Xu, Y. Deng. “Modeling Mobile Agent Systems with High Level Petri Nets”. 0-7803-

6583-6/00/ © 2000 IEEE.

[7] F. Dur, N. Steven, E. P. Lincoln, J. Meseguer. “principles of mobile maude”. In D.Kotz

and F.Mattern, editors, Agent systems, mobile agents and applications, second
international symposium on agent systems and applications and fourth international
symposium on mobile agents, ASA/MA 2000 LNCS 1882, Springer Verlag. Sep 2000.

[8] C. Fournet, G. Gonthier. “The Join Calculus: a Language for Distributed Mobile

Programming”. In Applied Semantics. International Summer School, APPSEM 2000,
Caminha, Portugal, Sep00, LNCS 2395, Springer-Verlag. Aug 2002, pp. 268-332.

[9] A. Fuggetta, G. P. Picco, G. Vigna. “Understanding Code Mobility”. IEEE transactions

on software engineering, vol. 24, no. 5, may 1998.

[10] L. Kahloul, A. Chaoui. “Labeled reconfigurable nets For modeling code mobility“. In

proceedings of ACIT 2007, Lattakia, Syria.

[11] K. M. van Hee, I. A. Lomazova, O. Oanea, A. Serebrenik, N. Sidorova, M. Voorhoeve.

“Nested Nets for Adaptive Systems”. 14 EE. ICATPN, 2006, pp. 241-260.

[12] 11, I.A. Lomazova. “Nested Petri Nets”; Multilevel and Recursive Systems. Fundamenta

Informaticae vol.47, pp.283-293. IOS Press, 2002.

[13] J. Meseguer. “A Logical Theory of Concurrent Objects and its Realization in the Maude

Language”. Agha G., Wegner P. and Yonezawa A., Editors, Research Directions in
Object-Based Concurrency. MIT Press, 1992, pp. 314-390.

[14] R. Milner, J. Parrow, D. Walker. “A calculus of mobile processes”. Information and

Computation, 100:1–77, 1992.

[15] R. Berger, I. Dori, S. Katz.”Modeling code mobility and migration: an OPM/Web

approach”, Int. J. Web Engineering and Technology, Vol. 2, No. 1, pp.6–28, 2005

[16] G. Rozengerg, "Handbook of Graph Grammar and computing Graph Transformation",

World Scientific, 1999.

[17] D. Sangiorgi, D. Walker. “The π-Calculus: A Theory of Mobile Processes”. Cambridge

University Press, 2001.

Nardjess Dehimi & Allaoua Chaoui

International Journal of Software Engineering (IJSE), Volume (3) : Issue (2) : 2012 51

[18] L. Athie, S. A. DeLoach. “Designing and Specifying Mobility within the Multiagent
Systems Engineering methodology ” Special Track on Agents, Interactions, Mobility,
and Systems (AIMS) at the 18th ACM Symposium on Applied Computing (SAC 2003).
Melbourne, Florida, USA, 2003.

[19] R. Valk. “Petri Nets as Token Objects: An Introduction to Elementary Object Nets”.

Applications and Theory of Petri Nets, LNCS vol.1420, pp.1-25, Springer-Verlag, 1998.

[20] M. Clavel, F.Durán, S.Eker, P.Lincoln, N. Marti-Oliet, J.Meseguer, J. Quesada.

“Maude:specification and programming in rewriting logic”.SRI International,
http://maude,.csl.sri.com, Januray 1999.

[21] J. Meseguer: “Conditional rewriting logic as a unified model of concurrency”.

Theoretical Computer Science, 96 (1):73-155, 1992.

[22] P. C. Ölveczky, J. Meseguer:” Real-Time Maude : A tool for simulating and analyzing

real-time and hybrid systems”. In K. Futatsugi, editor, Third International Workshop on
Rewriting Logic and its Applications, volume 36 of Electronic Notes in Theoretical
Computer Science. Elsevier, 2000.

[23] http://www.elsevier.nl/locate.entcs/volume36.html.

[24] L. Kahloul, Allaoua Chaoui. ”LRN/R-Maude Based Approach For Modeling And

Simulation Of Mobile Code Systems”. Ubiquitous Computing and Communication
Journal, vol. 3, No. 6, Dec. 2008.

[25] L. Kahloul, Allaoua Chaoui. ”Temporal Labeled Reconfigurable Nets for Code Mobility

Modeling”. The International Workshop on (Trustworthy Ubiquitous Computing (TwUC
2007)

[26] associated to the iiWAS2007 conference.

[27] L. Kahloul, Allaoua Chaoui. “Coloured reconfigurable nets for code mobility modeling”.

In Proc World Academy of Science, Engineering and Technology. Vol. 25, International
Conference Venice, Italy. Nov 2007.

