
I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 25

Knowledge Temple: A Collaborative Knowledge Sharing
Technique for Agile Software Development

I. Burak Ersoy Burak.Ersoy@tamucc.edu
Department of Computing Sciences
Texas A&M University-Corpus Christi
Corpus Christi, 78412, USA

Ahmed M. Mahdy Ahmed.Mahdy@tamucc.edu
Department of Computing Sciences
Texas A&M University-Corpus Christi
Corpus Christi, 78412, USA

Abstract

In today's economy, enterprises require knowledge more than ever before. Employees are being
classified based on their skill set and experience, where the tacit knowledge of individuals is a
key factor. The effect of knowledge hunger can be easily seen in agile software development
teams. To sustain the quality permanence of software development, it is essential to transform
individuals' tacit knowledge to core organizational knowledge. To achieve this goal, every
software development process utilizes different knowledge sharing and creation approaches. In
this paper, a proposed technique, Knowledge Temple, is introduced as a feasible improvement to
well-known knowledge sharing challenges for small agile software development teams. It is a
hybrid technique, incorporating knowledge sharing and building models, such as cognitive
apprenticeship, on-the-job-training, solo programming, pair programming, parallel peer
programming, pair rotation, and knowledge repository creation. The proposed technique has
been evaluated in the Innovation in Computing Research (iCORE) at Texas A&M University-
Corpus Christi. Experimental results show that this hierarchical approach provides an iterative
and incremental solution to sharing and creating knowledge in a collaborative and cooperative
fashion.

Keywords: Software Engineering, Agile Software Development, Knowledge Sharing, Knowledge
Creation, Knowledge Loss.

1. INTRODUCTION

Creating successful projects is the ultimate goal of software engineering. Thus, software
development methodologies are introduced to overcome software development issues, such as
late projects, budget issues, and faults [1]. Traditional software development methodologies,
team software process (TSP) and personal software process (PSP) from the Software
Engineering Institute (SEI) [2], and Agile methodologies [3] are leading software life-cycle models.
Every life-cycle model offers different participation or learning activities, such as cognitive
apprenticeship and knowledge repository creation routines. All those methodologies evolve
around knowledge management; in fact, knowledge sharing is the major component of each.

Tacit knowledge is the experience of development, training, and/or education, which materializes
in a person [4-9]. Software development is based on the tacit knowledge of the individuals. To
sustain the quality permanence of software development, it is essential to transform individuals'
tacit knowledge to core organizational knowledge. To achieve this goal, every software
development process utilizes different knowledge sharing and creation approaches.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 26

The problems of knowledge sharing and creation approaches are:

• Knowledge loss via retirement or high turnover rates and

• Knowledge hoarding for interpersonal reasons or organizational climate.

If the organization suffers from knowledge loss and knowledge hoarding, it may mean the
organization is staff-dependent [10]. For organizational success and continuity, organizations
have to be staff-independent. Being staff-independent means both knowledge loss and
knowledge hoarding protected. In order to be staff-independent, organizations should share the
knowledge among the development team. In addition, finding good programmers and the pace of
technology change can be listed as knowledge sharing challenges [10].

The effect of knowledge hunger can be easily seen in agile software development teams. Biawo-
wen [11] claims that we are in the "knowledge economy era" and states the knowledge necessity
for agile software development teams in three steps:

1. Knowledge is the only meaningful resource,
2. Companies’ products and services are based on the transformation of the knowledge,

and
3. Software employees require more knowledge management than any other business

sectors.

However, implementing knowledge sharing is not an easy task for agile development teams
compared to its increasing demand. Therefore, surveying knowledge sharing issues through
sociological, documentation, and implementation perspectives is essential to reveal the real
motive [10].

Agile practices offer state-of-art solutions for knowledge building and sharing; however, they have
their own drawbacks. In this paper, a proposed technique, Knowledge Temple, is introduced as a
feasible improvement to well-known knowledge sharing challenges for small agile software
development teams. It is a hybrid technique, incorporating knowledge sharing and building
models, such as cognitive apprenticeship, on-the-job-training, solo programming, pair
programming, parallel peer programming, pair rotation, and knowledge repository creation. This
hierarchical approach provides an iterative and incremental solution to share and create
knowledge in a collaborative and cooperative fashion.

2. KNOWLEDGE TEMPLE OVERVIEW

The paradigm shift from knowledge 'management' to knowledge 'sharing' has allowed software
development teams to focus on the team members and their culture as much as their productivity.
Maintaining productivity requires sustaining team member motivation, especially, for agile
development teams. In addition, a good organizational culture transforms team development
motivation to a successful knowledge sharing environment.

2.1 Evolution Knowledge Temple Practice
In order to create a knowledge sharing culture, pair programming was implemented with a small
agile development team at the Innovation in Computing Research (iCORE). Three different types
of progress were observed in every iteration cycle:

• Beginning of the iteration: low productivity and high knowledge sharing

• Middle of the iteration: medium productivity and low knowledge sharing

• Near the end of the iteration: high productivity and very low knowledge sharing

There was an inverse relationship between production level and knowledge sharing level. In
every sprint, because of tight project deadlines and high turnover rate, high productivity and at
least medium knowledge sharing was required. This requirement increased the responsibility

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 27

burden of the expert developers. Both application development and knowledge exchange were
fulfilled by the agency of expert developers, and it was the cause of their responsibility burden. To
accomplish high levels of knowledge sharing, expert developers were paired with novice
developers. It was the only way of growing the agile team because of the iCORE's developer
resources.

The outcome of applying pair programming was not successful. It was either inadequate
productivity and good knowledge exchange or good productivity and inadequate knowledge
exchange. The novice programmers made lots of complaints about expert developers' availability.
On the contrary, expert developers reported novice developers' motivation level as 'ground-level
intentness.'

Even if pair programming was not the optimum choice, a natural apprenticeship instance between
expert and novice developers occurred. The cognitive apprenticeship theory proceeded through
expert mentoring rather than pair programming. However, it was not enough for carrying out the
novice developers' contribution and sharing.

A middle-man was utilized between the expert and novice developers, creating the Knowledge
Temple. The middle-man should:

• Free the expert developer to increase the productivity,

• Support the novice developer to stimulate learning curve,

• Contribute toward the development progress, and

• Hold up the development and knowledge sharing structure.

Consequently, small teams of three were formed and named as 'Temple.' Every Temple had a
mandatory expert developer and two apprentices, entitled Temple Master and Temple
Apprentices.

2.2 Knowledge Temple Technique
Having two apprentices under the influence of a lead created a core team culture. Cognitive
apprenticeship theory is the dominant characteristic of the Knowledge Temple, as it is in human
nature. The leadership of the Temple Master is as important as the will and autonomy of Temple
Apprentices. However, the Temple Master has a high responsibility to sustain the Knowledge
Temple mechanism. As shown in Figure 1, the Knowledge Temple contains three different zones
addressing development and knowledge sharing.

Zone 1 is the Temple phase where the Temple Master and Apprentices perform solo
programming. Zone 1 is extremely important for productivity when there is tight deadlines. The
Temple Master should reserve development time, particularly when the development contribution
of the Temple Apprentices is low. Moreover, project management meetings can be performed
between the Temple Master and project manager as a zone 1 activity. While the Temple Master
is in zone 1, the Temple Apprentices can stay in the phase of zone 1 or they can call for zone 2
between them. Being in the phase of zone 1 for the Temple Apprentices is essential both for
development and knowledge building. The Temple Master has the privilege to assign duties,
which can be a contribution for productivity, hands-on learning tasks, or a knowledge repository
creation.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 28

FIGURE 1: Knowledge Temple Technique.

Zone 2 is the phase where the Temple works as pairs. There are two ways of pairing: Master -
Apprentice or Apprentice - Apprentice. The Master - Apprentice pairing allows higher productivity
than knowledge sharing. On the other hand, the Apprentice - Apprentice pairing enables
knowledge sharing more than productivity. In zone 2, pairs can perform on-the-job-training, pair
programming, parallel peer programming, and knowledge repository creation. In addition, the
nature of the Knowledge Temple technique facilitates pair rotation. Pair rotation can be performed
in the Temple and among the Temples because an apprentice for Temple 1 can be an apprentice
for Temple 2. For this reason, knowledge spreads in the agile development team like a social
network.

In zone 3, both Temple Master and Apprentices come together and carry out activities as a team.
Zone 3 is the core of the Knowledge Temple technique. It is the phase that lowers Temple
member production, but highly increases the knowledge sharing and team building activities. The
Temple Master creates the meeting agenda for the zone 3 phase through the progress of
development. Temple members may engage in brainstorming, on-the-job-training, formal training,
code revision, code inspection, Q&A sessions, or enhancing the communication between Temple
members. The Temple forms a team structure in zone 3 to overcome the sociological issues of
knowledge sharing. Furthermore, the project managers can be a part of the zone 3 meetings in
order to monitor the Temple efficiency.

2.3 Building the Temple
The Temple initiation is an essential period in the life of the Knowledge Temple. Assigning the
Temple Master among the agile development team is a simple but not easy task. It is simple
because the selection process is related to the project and required development talents.
Therefore, the number of available Temple Masters decreases through their required
development experience. It is not easy because the Temple Master should have leadership and
tutoring abilities to enhance knowledge sharing and team management. However, the team
environment of Temples helps the Temple Master for both managing the team and maintain the
development quality. After deciding the Temple Master, it is time to select the apprentices. The
apprentice selection depends on the project requirements, which may demand:

• High productivity,

• A balance between productivity and knowledge sharing, or

• High knowledge sharing.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 29

However, it is essential to keep the knowledge sharing level no less than medium because the
high turnover rate is a concerning issue for all small agile development teams. Furthermore, a
master may serve as an apprentice depending on the project requirements and expert skills.

The Temple, containing three expert team members, empowers high productivity. In this setting,
the Temple Apprentices take more responsibility for application development. At the same time,
they obtain more information about the project, the status of the project, and the development
method of the project. They adapt faster for both the development and knowledge sharing
phases. In addition, using three expert team members is a good way of growing new Temple
Masters.

To create a balance between productivity and knowledge sharing, the Temple should contain one
expert, one average, and one novice level developers. This is the best setting for the Knowledge
Temple technique because it completely fulfills the middle-man approach. The Temple
apprentice, who has an average level of experience, supports the other Temple apprentice for
both development and knowledge sharing needs. Moreover, an average apprentice contributes to
application development much more than a novice apprentice, which makes The Temple
Master's job easier. At the same time, he learns from the Temple Master quicker than a novice
apprentice, and shares the knowledge with the novice apprentice efficiently.

An expert and two novice developers form the Temple for high knowledge sharing. Two Temple
Apprentices, who have almost the same level of experience, enables a strong learning
environment. Even if their contribution to development is minor compared to other Temple
alternatives, the Temple Apprentices have a strong motivation to exchange knowledge. This
ambitious impulse provides a big potential for future projects. In addition, two novice Temple
Apprentices may affect the Temple Master's productivity. However, the Temple develops more
innovative approaches due to an increased number of Temple meetings.

2.4 Knowledge Temple vs. Jedi Temple
The fun factor of agile development is also indispensable. It encourages team building and team
unity. Star Wars

TM
 was selected as the theme of the Knowledge Temple technique (Figure 2).

FIGURE 2: Knowledge Temple vs. Jedi Temple. Images are sourced from: http://www.starwars.com/.

There are two reasons behind the Star Wars

TM
 theme. First, Star Wars

TM
 is a very popular movie

among people in science and technology [12-14]. Therefore, introducing a new technique with a
well-known and beloved theme allows an immediate adaption. Second, the nature of the selected

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 30

Star Wars
TM

 characters are self-descriptive for both the Temple roles and the Knowledge Temple
mechanism.

The Yoda character in the Star Wars

TM
 universe is selected as the Temple Master in the

Knowledge Temple technique, due to his leadership, mentorship, and high talents. The Obi-Wan
and the Anakin characters are the Temple Apprentices in the proposed technique because of
their cooperative and collaborative efforts in the Star Wars

TM
 universe. Through the selected

characters, the agile development team conceptualizes the roles and the role hierarchy in the
Knowledge Temple technique. Moreover, the interaction between the selected Star WarsTM
characters describes the the Knowledge Temple mechanism. Yoda, Obi-Wan, and Anakin may
accomplish quests as a tightly-coupled team, loosely-coupled teams, or solo heroes. They have
their individual and team responsibilities and report to each other through their hierarchy. They
are always determined in their quests, eager to learn the power of the Force, and respectful to
each other. As a result, the ambiance of the Jedi Temple in the Star WarsTM universe is the ideal
scene for the Knowledge Temple technique.

3. EXPERIMENT DESCRIPTION

Software engineering is a developing practice compared to other engineering fields or science
disciplines. Even if software engineering is still an immature regimen, it has progressed very far in
a short amount of time along with new software engineering branches. Agile software engineering
is one of the most challenging and promising areas for empirical software engineering research.
The nature of agile methodologies requires informal, observational, and on-the-job research.
Therefore, empirical studies offer an essential way to evaluate new agile approaches. However,
researchers argue about the contributions of empirical software engineering research [15] and
offer ground rules to improve the results of empirical studies [16,17].

In order to improve the research and reporting processes, the Empirical Research in Software
Engineering Guideline designed by Kitchenham et al. [17] was followed. The researched
characterization framework introduced by Shaw [15] and the empirical software engineering
research best practices from Weyuker [16] were also considered and utilized. In addition, the
Knowledge Survey, which was developed by Palmieri [18], was put into practice as a research
and evaluation method.

3.1 Experiment Context
Pair programming is a successful knowledge sharing technique if its requirements are all fulfilled.
For a small agile development team, however, applying pair programming causes utter confusion
between productivity and knowledge sharing for the pairs. The tight schedule of application
development does not allow lead contributors to share their tacit knowledge with newcomers.
Moreover, knowledge hoarding issues increase if the small development team has a high
turnover rate. As a result, the small agile development teams may not create harmony for a
collaborative and cooperative working environment through pair programming.

In this work, the possibility of a new knowledge sharing technique is discussed, considering the
well-known pair programming issues. To enable a collaborative production, the experience gap
between the pairs was focused on. Augmenting the knowledge transfer potential was sought,
while development productivity was ensured. The issue of scheduling was delved into through
development deadline and knowledge sharing burden. Finally, the team determined to create a
knowledge sharing culture, which constantly increases team motivation in an agile environment.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 31

3.2 Experiment Population
The Knowledge Temple was applied in iCORE at Texas A&M University-Corpus Christi. iCORE is
a research, development, and commercialization group, which comprises undergraduate and
graduate level students. The agile development team of iCORE was formed from sophomore,
junior, and senior level undergraduate and Master's level graduate students. The team did not
include freshman level undergraduate students due to their insufficient programming abilities. All
the students were part-time workers, who contributed ten or twenty weekly work hours as a part
of the agile development team.

The varied levels of computer science students created an environment that could be considered
as a real world atmosphere:

• Sophomore and junior level undergraduate students as newly-hired developers or
interns,

• Senior level undergraduate students as junior developers, and

• Master's level graduate students as senior developers.

Therefore, iCORE offered a unique empirical research environment for an observational
experiment. Moreover, it is essential to have a diverse group of team members to effectively
evaluate knowledge sharing results. It is assumed that the expert developers have more
experience on project development requirements than apprentice developers in Knowledge
Temple experiment. This unique environment exposed a mandatory employee turnover rate
through the graduation of team members.

The cultural diversity of iCORE also offered an outstanding research environment. The
experiment population contained team members from the United States, Vietnam, India, and
Turkey. It allowed for the creation of a melting pot of different cultures and work ethics. In
addition, applying the proposed technique in a university environment was promising because
today's students will be tomorrow's professionals; thus, it was important to get results from future
generations.

The agile development team had fifteen members. Each team member named as TMb# (Team
Member #), where "#" stands for both the sequence of recruitment and ID number. For instance,
TMb1 joined the development team first and TMb18 was last. The numbering system is important
to comprehend the evolution of the team members. Nonetheless, it does not show the experience
difference between team members because there is an opportunity that a Master's level graduate
student can join the agile team after a sophomore level undergraduate student or vice versa.

3.3 Experiment Projects
The experiment environment had different levels of developers and different types and levels of
projects. The proposed knowledge sharing technique was applied to three different projects. One
of the projects was examined through version 0, version 1 and version 2 standings. Moreover, the
proposed approach was applied not only to programming but to every aspect of the project
development process, such as client collaboration, application publishing, and project
presentation. SOAR SI, CCISD, and Museum were the names of the projects.

The SOAR SI project was an informative mobile application for science, technology, engineering,
and mathematics (STEM) undergraduate students. It offers schedule, location, and orientation
about supplemental instruction (SI) sessions offered by the Title V-STEM Outreach, Access, and
Retention (SOAR) Program at Texas A&M University-Corpus Christi. The application contains six
touch user interfaces (TUI) and nine development modules. The development team utilized the
Appcelerator Platform and the Titanium SDK as the mobile application development platform. The
SOAR SI project was published for both iOS (iPhone and iPad) and Android (smartphones and
tablets) devices.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 32

The CCISD project is a full educational guidance application for Corpus Christi Independent
School District (CCISD). It presents a school directory, CCISD school calendar, CCISD lunch
menu, CCISD news, CCISD athletics, reporting a bully functionality, and more. The application
contains twelve TUIs and fourteen development modules. The development team utilized the
Appcelerator Platform and the Titanium SDK as the mobile application development platform. The
CCISD project was developed for both iOS (iPhone and iPad) and Android (smartphones and
tablets) devices.

The Museum project is a full body interactive wall with custom design exhibits for the Corpus
Christi Museum of Science and History. It introduces a dynamic projected content on the museum
wall for children through interactive science and history education. Adobe Flash Professional and
GroundFX Flash SDK from GestureTek were selected as the development platforms. The
Museum project was under prototyping process, which was designed for a special interactive wall
projection system.

3.4 Experiment Technologies
The use of technology is a driving force for software engineering methodologies. Especially for
agile development, there is a skyrocketing market for different methods, conditions, and settings.
The Knowledge Temple presents a knowledge sharing technique; however, building knowledge
sharing culture within the organization and beneficial technology solutions for the agile
development team are the beginnings of success. Therefore, any technological tool that works for
the Temple was the point of interest. It was also important to build a balance for the flexible
operating manner for the Temples.

In iCORE, it is a rule to use Bitbucket as a version control system. Bitbucket, a web-based
hosting service for projects, allows public and private project repositories, team management,
code reviews, and source code insight. Therefore, the Temple development and sharing progress
was tracked by the developer submissions, assigned issues, Wiki, and comments through source
code reviews. However, some Temples also took advantage of Trello for their project
management purposes.

For mobile development, the Appcelerator Platform was used. The Titanium SDK employs only
JavaScript language for creating native applications across different mobile devices. Using one
development language for both iOS and Android development accelerated the development
iterations. Moreover, the modular development design of Titanium allowed the team to build an
on-the-job knowledge sharing culture through code modules. Another script-based platform,
Adobe Flash Professional is also used in this experiment.

For documentation purposes, the development team suggested using the JSDoc documentation
tool. It is an inline API documentation tool for JavaScript. Therefore, the Temple members added
documentation comments to source code to create Wikis for knowledge sharing fashion.

To enhance communication and collaboration, the development team facilitated different video
conferencing tools. They made use of Skype and Google Hangouts occasionally. However,
TeamViewer was the widely used tool to establish a flexible time-sharing. The screen sharing and
browser-based presentation features were indispensable and formed a robust learning
environment.

In addition to software products, the team employed Alienware 23-Inch Desktops, 21-Inch iMacs,
a projector, and a multi-touch smart board. The desktop computers were put in practice for
development, testing, and knowledge sharing. The projector was used when Temples met in the
brainstorming area at iCORE. Nonetheless, the most engaging learning tool was the smart board,
in the iCORE conference room, because team members performed knowledge sharing, testing,
informative Temple meetings, and customer collaboration with the help of the smart board. It
increased the team motivation and empowered application interaction with its multi-touch feature.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 33

3.5 Experiment Questionnaire
In addition to observational research, a survey was utilized as one of the research methods
because of the high developer turnover in iCORE. Most of the participants had graduated and
started to work in different parts of the United States while the progress of the experiment was
being observed.

Palmieri [16] developed the Knowledge Survey to assess the experiment of using pair
programming as a knowledge management technique. It was essential to use a survey that had
already proved reliable and valid. All the questions were closed-ended to offer the same mental
set while answering the questionnaire. The questions were kept as similar as possible to perform
a similar questionnaire concept to the proposed solution. The survey was divided into 3 sections:

• Section 1: Knowledge Sources

• Section 2: Knowledge Acquisition, Dissemination, and Maintenance

• Section 3: Demographical Background Information

In Section 1, the questions were designed to investigate the sources utilized instead of
emphasizing knowledge sharing terminology. In addition, Section 1 questioned the tools and
knowledge sharing procedures that the proposed technique should evaluate. Section 2
investigated the organizational strategy on knowledge sharing. Additionally, Section 2 inquired
about the effect of the proposed technique on knowledge hoarding and employee turnover.
Finally, Section 3 had questions to capture the demographical background information of the
team members.

Required sections were modified in order to fulfill the experiment context. In Section 1 and
Section 2, some questions were deleted due to the Knowledge Temple technique progress and
experiment resources. In Section 3, the question that directly related with pair programming was
deleted and two questions were added instead:

• How satisfied are you working in a small team with 2 peers?

• How satisfied are you working in a small team with a peer?

The newly added questions investigated the receptiveness of team members, who worked in a
small group of three people, to each other and the method. Participants were asked to reply
through their satisfaction level. Their feedback formed the fundamental results of our research
and the foundational theory for future studies.

4. EXPERIMENT RESULTS

Evaluating empirical software engineering research was a complicated process. To acquire
reliable results, the contribution of Temple members was analyzed through the Bitbucket platform
and a questionnaire was administered after the Knowledge Temple experiment at iCORE.
Moreover, observational experiences from applying the Knowledge Temple technique in a small
agile development team was shared. The Knowledge Temple questionnaire was a variation of a
questionnaire by Palmieri [18], which was a main instrument used to evaluate the effect of pair
programming as a knowledge management approach. Some questions were altered to best fit the
proposed Knowledge Temple technique [19]. Moreover, preliminary analysis was performed on
the data to ensure integrity.

4.1 Team Member Contribution
Bitbucket is a web-based hosting service, which offers revision control, code insight and code
review. Therefore, Bitbucket was utilized for development, knowledge sharing, and evaluating the
development progress. All the team members had their individual accounts on the Bitbucket
system. Through this account, they accessed the code of the project and contributed to the
project by module development. Whenever a team member accomplished a working copy of the
module, s/he submitted this version through the version control system. As shown in Table 1, the

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 34

number of submissions from Temple Masters and Temple Apprentices was evaluated. In
addition, the production modules were designed with as comparable size and complexity as
possible. This was largely feasible due to the nature and type of the projects that the experiment
was conducted on.

For SOAR SI version 1, 256 submissions were recorded in Bitbucket. The three Temple Masters
completed 141 submissions and the eight Temple Apprentices achieved 115 submissions. As a
result, the Temple Masters developed 55% of SOAR SI version 1. It was expected that the three
Temple Masters lead productivity; however, the contribution from the eight Temple Apprentices
was higher than expected. The reason for this was the on-the-job learning culture of the
Knowledge Temple technique.

Project
Name

Total
Submissions

Temple
Masters

Temple
Apprentices

SOAR SI Version 1 256 141 (55%) 115 (45%)

CCISD 115 65 (56.5%) 50 (43.5%)

TABLE 1: Submission Results.

In the CCISD Project, 115 submissions have been archived at the time of this research. The
CCISD project is still under development. The Temple Master completed 65 submissions and the
two Temple Apprentices achieved 50 submissions. Consequently, the productivity contribution of
the Temple Master was higher (56.5%) than the two Temple Apprentices (43.5%) as expected.
However, this result established the fact that the Temple was exchanging and building knowledge
through the Knowledge Temple technique process while they were developing software.
Moreover, the Temple Master acknowledged that the Temple Apprentices were able to apply the
gained knowledge from the former project into the CCISD project.

4.2 Questionnaire Results
Fifteen responses for the Knowledge Temple Questionnaire were received, which was the total
number of experiment participants. Through the single-blind experiment approach, the questions
could not be asked directly regarding the Knowledge Temple technique. The first section of the
survey investigated the participants' knowledge source penetration for knowledge building
behavior (Figure 3). Internal publications, design documents, external publications, the Internet,
co-workers, classroom or online courses, and databases or groupwares as a knowledge source
were the foci. The participants indicated almost equal usage of internal publications (77%),
design documents (73%), external publications (66%), and classroom or online courses (74%) for
knowledge sharing and knowledge building purposes. However, the Internet (100%), databases
or groupwares (87%), and co-workers (84%) were voted as the most widely used sources.
Therefore, utilizing the Internet and web-based knowledge sharing tools, such as Bitbucket,
Dropbox, Google Drive, TeamViewer, Skype, or Google Hangouts, was a very important research
perspective for the Knowledge Temple experiment. Moreover, combining the power of the web
with the competence of the participants' co-workers created an influential knowledge sharing
culture. The participants also recommended workshops and hands-on studies for the open-ended
other beneficial knowledge sources question.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 35

(a)

(b)

(c)

FIGURE 3: Knowledge Sharing Sources. (a) The Internet; (b) Databases and Groupwares; (c) Co-workers.

In Section 2, the survey targeted the participants' knowledge sharing determination and
knowledge lost perspective through the knowledge acquisition, dissemination, and maintenance
processes.

As shown in Figure 4, most of the participants (73%) thought iCORE's agile development team
was good at creating new knowledge through its people and technical resources. However, they
(47%) argued that the team was not adequate by means of finding, organizing, and documenting
the knowledge possessed through the Knowledge Temple technique. Although 53% of the
participants were satisfied with the knowledge creation process, the percentage was expected to
be closer to 80%; therefore, this is an area that requires more research. The analysis supports
both effective knowledge acquisition from outside sources and effective knowledge accessibility.
Utilizing web-based repositories and web-based communication allowed a continually
approachable environment.

(a)

(b)

(c)

(d)

FIGURE 4: Knowledge Creation and Accessibility. (a) Creating Knowledge through People and
Technological Resources; (b) Finding, Organizing, and Documenting the Knowledge; (c) Acquiring

Knowledge from Outside Sources; (d) Making Knowledge Accessible for Anytime, Anywhere.

Testing the effects of the Knowledge Temple technique on knowledge hoarding problems was
essential considering influential knowledge sharing. As shown in Figure 5, the impact of
knowledge sharing among the iCORE team members was highly acknowledged. Analysis of

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 36

development quality and productivity assessment question showed that 93% of the survey
participants improved their development abilities due to knowledge sharing. Although participants
(79%) stressed that their unique knowledge enhanced their competitive advantage over their
peers, 66% of the participants gladly agreed to share knowledge with the agile development
team. Moreover, the flexible productivity and knowledge sharing culture of the Knowledge Temple
technique created an extraordinary workplace where teams and individuals worked
simultaneously. The results of the question about the performance rewarding process showed
that 50% of the participants determined team success and individual accomplishment are equally
effective. Counterbalancing this, an equal amount of participants argued the case considering
"primarily individual accomplishments, but also some team success" (21%) or "primarily team
success, but also some individual accomplishments" (21%).

(a)

(b)

(c)

(d)

FIGURE 5: Knowledge Hoarding Effects. (a) Improving the Quality and Productivity due to Shared
Knowledge; (b) Hoarding Knowledge because of Competitive Advantage Over Team Members; (c) Willing to

Share the Knowledge Among the Team Members; (d) Rewarding based on Individual Technical
Accomplishments vs. Team Success.

Experiencing mandatory employee turnover was a challenge for the Knowledge Temple
experiment; however, the experiment participants presented courage and confidence through
compensation of knowledge loss due to team member turnover (Figure 6). According to the
results, team members can compensate for knowledge loss of less than a month (46%) or
between one month and three months (33%). Moreover, the effect of losing an expert member
did not change the trust of residual agile development team members. The team members (47%)
admitted to covering the knowledge loss due to expert member turnover.

(a)

(b)

FIGURE 6: Knowledge Loss Effects. (a) Compensating the Knowledge Loss due to Team Member
Turnover; (b) Compensating the Knowledge Loss due to Senior Technical Member Turnover.

In Section 3, the sociological factors in the workplace were evaluated. The participants (87%),
who performed the Knowledge Temple technique, were satisfied with their working environment.
As shown in Figure 7, 66% of the participants presented collaborative work between 10% and

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 37

50% of their daily working hours. Moreover, the agile development team members felt confident
in a working environment both with a peer (93%) and with 2 peers (86%).

(a)

(b)

(c)

(d)

FIGURE 7: Demographical Workplace Information. (a) Enjoying the Current Position; (b) Collaborating with
Team Members; (c) Working in a Small Team with 2 Peers; (d) Working in a Small Team with a Peer.

4.3 Observational Results
Experiencing the drawbacks of pair programming changed the development perspective. The
programming level difference of the agile development team members did not allow for the
application of pair programming successfully. However, the power of pair programming was not
undervalued. The development team members required a flexible working environment where
they could accomplish both application development and knowledge sharing. The iCORE
environment empowered the Knowledge Temple technique with its nature. Having different levels
of programmers facilitated a working environment as a team of three. Therefore, the expert
developer could continue development and share knowledge. At the same time, the average and
novice developers could build knowledge and contribute to application development. Having three
developers in a team, influenced by the expert developer, allowed much more adaptable and
responsive team work.

In the Knowledge Temple experiment, one of the most important decisions was selecting the
Temple Master. The Temple Master was responsible for the Temple and controlled the Temple
through guidance. Every Temple had its own rules and way of accomplishing requested job
duties. However, the Temple Master was the one who ensured the productivity of the project and
knowledge sharing progress among the team. This management allowed the Temple Apprentices
to contribute more while they were learning through their own efforts, pair studies, or Temple
unification.

The selected theme, Star Wars

TM
, notably increased the motivation of the Temple Apprentices.

The idea of being Yoda was a big impulse compared to being a leader or a master for a team. It
is worth noting that Star Wars

TM
 may not always be the best theme for any development

environment. Therefore, another theme could be selected if required. However, it is important to
choose a theme that can conceptualize the hierarchy, the mechanism, and the communication of
the Knowledge Temple technique.

The unique environment of iCORE offered a high employee turnover through graduation of the
team members; therefore, it was difficult to observe the effects of the Knowledge Temple
technique for employee turnover. However, the graduated members reported that they felt the
loss of the team working environment at iCORE.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 38

Another challenge in iCORE was the tight deadlines of the agile projects. Therefore, the Temple
of three experts or the Temple of one expert, one average, and one novice were created for most
of the projects. The Temple of three experts hastened the development speed of the projects and
assisted Temple Master growth for different Temples. On the other hand, the Temple of one
expert, one average, and one novice enhanced the productivity and knowledge sharing
simultaneously. It was also the best fit for the varied levels of iCORE developers. The Temple of
one expert and two novices was also utilized in the Knowledge Temple experiment. This Temple
style enabled the knowledge sharing and active learning for the novice developers; however,
productivity decrease was reported by Temple Masters. Therefore, building the Temple was an
essential part of the Knowledge Temple technique requiring a good knowledge level observation
among the development team members. Moreover, the project requirements influenced the
Temple building process through appropriate developer selection.

The Knowledge Temple technique built a working culture for iCORE. The hybrid setting of the
Knowledge Temple technique streamlined the agile development team members by the
adaptation process. The amenity of the Knowledge Temple mechanism simplified the knowledge
sharing process. Traditionally, newcomers hoarded the knowledge that they possessed through
application development; however, the iCORE culture oriented all the team members to team
success rather than individual accomplishments.

Finally, small agile development teams require internal growth from their developers in the areas
of development continuity and quality, due to the difficulty in hiring external competent
developers. The Knowledge Temple technique facilitates the team to share and build knowledge
between team members. Having three different zones to communicate, contemplate, and develop
escalates the growth process of successful developers for small agile development teams.

5. CONCLUSION AND FUTURE RESEARCH

Despite the productive, flexible, and adaptive nature of agile development, it may suffer from
knowledge sharing limitations. This includes knowledge loss due to retirement or high turnover
rates of skilled professionals and knowledge hoarding due to interpersonal or organizational
climate. Thus, the internal growth of developers is highly desirable for a small development team
to maintain production quality. The influence of pair programming for software development and
knowledge sharing is respected. However, this technique is confronted by time-sharing issues,
due to attempting to perform a number of tasks concurrently; motivational loss issues, due to pair
level difference; and focus shift to separated tasks instead of a common goal, due to tight
deadlines.

The Knowledge Temple was proposed as a knowledge sharing technique for small agile software
development teams that supports both software development productivity and knowledge
exchange between team members. The Knowledge Temple is a cognitive apprenticeship model,
where every Temple has three members: one Temple Master and two Temple Apprentices.
There are three zones where Temple members can perform software development and
knowledge sharing methods, such as on-the-job-training, solo programming, pair programming,
parallel peer programming, pair rotation, and knowledge repository creation.

A single-blind experiment was performed with iCORE at Texas A&M University-Corpus Christi.
Almost all of the development team members were part-time working university students either
undergraduate or graduate level. The Knowledge Temple technique was administered in three
different projects with ten varied Temples. To evaluate this empirical thesis study, Temple
member's development contributions, a Knowledge Temple questionnaire, and observational
outcomes were utilized. The results of the Knowledge Temple experiment illustrated:

• Development priority for Temple Masters,

• Knowledge sharing availability for Temple Masters,

• Knowledge sharing priority for Temple Apprentices,

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 39

• Development support opportunity for Temple Apprentices,

• Flexible scheduling for both development and knowledge sharing processes,

• Inspirational small team fashion, and

• Motivation continuity through Temple member availability.

Consequently, team member contribution, questionnaire results, and observational results yielded
significant evidence that the Knowledge Temple technique for small agile development teams is
an effective means of software development and knowledge sharing simultaneously. Moreover,
the iCORE team members noted that they enjoyed the experience and declared that their
technical skills had been increased. However, this empirical study alone is insufficient to validate
the reported benefits of this knowledge sharing and development style. The Knowledge Temple
technique should be performed as a teaching technique in academia to evaluate the influence on
future generations. In addition, as mentioned previously, a higher number of participants were
expected to be satisfied with the knowledge creation process; however, only 53% were satisfied
with this process. Therefore, this difference needs further exploration. Finally, examining the
proposed technique in the industry with full-time workers is another way to comprehend the
collaborative and cooperative effects of the Knowledge Temple technique.

Acknowledgments
This work has been supported, in part, by National Science Foundation grant CNS-1042341.

6. REFERENCES
1. Chau, T., Maurer, F., and Melnik, G. Knowledge sharing: agile methods vs. tayloristic
 methods. In Enabling Technologies: Infrastructure for Collaborative Enterprises, 2003. WET
 ICE 2003. Proceedings. Twelfth IEEE International Workshops on (2003), pp. 302–307.

2. Amaral, L., and Faria, J. A gap analysis methodology for the team software process. In
 Quality of Information and Communications Technology (QUATIC), 2010 Seventh
 International Conference on the (2010), pp. 424–429.

3. Chowdhury, A., and Huda, M. Comparison between adaptive software development and
 feature driven development. In Computer Science and Network Technology (ICCSNT), 2011
 International Conference on (2011), vol. 1, pp. 363–367.

4. Abdullah, R., and Talib, A. Knowledge management system model in enhancing knowledge
 facilitation of software process improvement for software house organization. In Information
 Retrieval Knowledge Management (CAMP), 2012 International Conference on (2012), pp.
 60–63.

5. Crawford, B., Castro, C., and Monfroy, E. Knowledge management in different software
 development approaches. In Advances in Information Systems, T. Yakhno and E. Neuhold,
 Eds., vol. 4243 of Lecture Notes in Computer Science. Springer Berlin Heidelberg, 2006, pp.
 304–313.

6. Jiang, H., Liu, C., and Cui, Z. Research on knowledge management system in enterprise. In
 Computational Intelligence and Software Engineering, 2009. CiSE 2009. International
 Conference on (2009), pp. 1–4.

7. Salleh, K. Tacit knowledge and accountants: Knowledge sharing model. In Computer
 Engineering and Applications (ICCEA), 2010 Second International Conference on (2010), vol.
 2, pp. 393–397.

8. Stettina, C., Heijstek, W., and Faegri, T. Documentation work in agile teams: The role of
 documentation formalism in achieving a sustainable practice. In Agile Conference (AGILE),
 2012 (2012), pp. 31–40.

I. Burak Ersoy & Ahmed M. Mahdy

International Journal of Software Engineering (IJSE), Volume (7) : Issue (2) : 2016 40

9. Tao, Y., Wang, J., Wang, X., He, D., and Yang, S. Knowledge-based flexible business
 process management. In TENCON 2006. 2006 IEEE Region 10 Conference (2006), pp. 1–3.

10. Ersoy, B., and Mahdy A. Agile Knowledge Sharing. International Journal of Software
 Engineering (IJSE) 2015, 6, 1-15, 1.

11. Biao-wen, L. The analysis of obstacles and solutions for software enterprises to implement
 knowledge management. In Information Management and Engineering (ICIME), 2010 The
 2nd IEEE International Conference on (2010), pp. 211–214.

12. Briggs, J. ”star wars”, model making, and cultural critique: A case for film study in art
 classrooms. Art Education 62, 5 (2009), 39 – 45.

13. Kapell, M., and Lawrence, J. Finding the Force in the Star Wars Franchise: Fans,
 Merchandise, and Critics. Popular culture and everyday life. Peter Lang Pub Incorporated,
 2006.

14. Roberts, A. Culture, identities and technology in the Star Wars films: Essays on the two
 trilogies. SCIENCE-FICTION STUDIES 35 (n.d.), 156 – 159.

15. Shaw, M. What makes good research in software engineering? In Presented at the European
 Joint Conference of Theory and Practice of Software (ETAPS 2002), Grenoble, France. To
 appear in the International Journal on Software Tools for Technology Transfer. (2002).

16. Weyuker, E. Empirical software engineering research - the good, the bad, the ugly. In
 Empirical Software Engineering and Measurement (ESEM), 2011 International Symposium
 on (2011), pp. 1–9.

17. Kitchenham, B., Pfleeger, S., Pickard, L., Jones, P., Hoaglin, D., El Emam, K., and
 Rosenberg, J. Preliminary guidelines for empirical research in software engineering. Software
 Engineering, IEEE Transactions on 28, 8 (2002), 721–734.

18. Roberts, A. Culture, identities and technology in the Star Wars films: Essays on the two
 trilogies. SCIENCE-FICTION STUDIES 35 (n.d.), 156 – 159.

19. Palmieri, D. W. Knowledge Management Through Pair Programming. PhD thesis, North
 Carolina State University, 2200 Hillsborough, Raleigh, NC 27695, 2002.

