
Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 41

A Survey on Design Pattern Detection Approaches

Mohammed Ghazi Al-Obeidallah M.Al-Obeidallah@brighton.ac.uk
Department of Computing
University of Brighton
Brighton, BN2 4GJ, United Kingdom

Miltos Petridis M.Petridis@brighton.ac.uk
Department of Computing
University of Brighton
Brighton, BN2 4GJ, United Kingdom

Stelios Kapetanakis S.Kapetanakis@brighton.ac.uk
Department of Computing
University of Brighton
Brighton, BN2 4GJ, United Kingdom

Abstract

Design patterns play a key role in software development process. The interest in extracting
design pattern instances from object-oriented software has increased tremendously in the last
two decades. Design patterns enhance program understanding, help to document the systems
and capture design trade-offs.

This paper provides the current state of the art in design patterns detection. The selected
approaches cover the whole spectrum of the research in design patterns detection. We noticed
diverse accuracy values extracted by different detection approaches. The lessons learned are
listed at the end of this paper, which can be used for future research directions and guidelines in
the area of design patterns detection.

Keywords: Design Patterns, Detection, Reverse Engineering, Gang of Four, Patterns Recovery,
Survey.

1. INTRODUCTION

Design pattern defined by Gamma et al. [1] as "a general reusable solution to commonly
occurring problem in software design". A design pattern is a description or template for how to
solve a problem that can be used in many different situations. It describes the core of the solution
to the problem in such way this solution can be used many times over, without doing it in the
same way twice [1].

The field of design patterns detection has attracted researchers from both academia and industry.
Design patterns reflect the earliest set of design decisions that have been taken by the
development team. Moreover, design patterns improve software documentations, speed up the
development process, enable large-scale reuse of software architectures, capture expert
knowledge, capture design trade-offs and help re-structuring systems. Many approaches have
been used in the last two decades to recover design pattern instances from object-oriented
source code. The main objective of design pattern detection approaches is to accurately extract
the instances of design patterns. However, detection approaches differ in their input, extraction
methodology, case studies, recovered patterns, system representation, accuracy and validation
method.

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 42

In fact, the field of design pattern detection still faces a number of key challenges, such as the
current detection approaches are working independently from each other, no standard
benchmarks nor references to validate the recovered instances and the possible variants of the
design pattern. In addition, the evaluation of design pattern detection approaches is somehow
difficult since most of the current detection tools are not publicly available.

Design pattern detection approaches perform similar major steps for patterns recognition. These
steps are related to information extraction from source code, archetype detection and results
representation. This survey only focuses on Gang of Four [1] (GoF) design patterns. Of course,
this does not suggest that GoF’s patterns are better than other types of patterns (for example,
architectural patterns and idiom patterns).

Some detection approaches applied the experiments on small size programs using a few patterns
and they achieved high precision and recall rates. In addition, most of the detection approaches
rely on code level for patterns detection, which uses the source code as input and represents it in
one of the parsing formats (Abstract Syntax Tree (AST) or Abstract Syntax Graph (ASG)). The
parsing and modeling techniques affect the accuracy of the detection process.

An empirical review and evaluation of existing detection approaches are important to guide the
researcher through the weaknesses of the current detection approaches. This paper provides the
current state of the art of design pattern detection approaches. To the best of our knowledge,
there is no comprehensive study to classify design pattern detection approaches.

The rest of this paper is organized as follows: Section Two presents the sources of the state of
the art selection. An overview of the most important detection approaches is presented in Section
Three. Section Four presents analysis and discussion on the selected detection approaches.
Section Five presents the lessons learned. Finally, Section Six presents the conclusion and the
guidelines for future research directions.

2. STATE OF THE ART SELECTION
We reviewed 80 papers published in highly ranked conferences and journals from 1996 until
2015. However, 34 design pattern detection approaches have been selected and their recovery is
part of our statistical analysis. The selection of these approaches was made based on their
novelty, results confidently, the area of concern (GoF) and the publisher rank. Some approaches
are excluded since they are not focusing on GoF patterns, they are extracting a few patterns
which are easy to detect and their results are not validated. Table 1 shows the sources of
selected papers.

TABLE 1. Sources of selected papers.

Journals

IEEE Transactions on Software Engineering

ACM Transaction on Software Engineering

Empirical Software Engineering Journal

Journal of Systems and Software

Journal of Information and Software Technology

The Journal of Object Technology

Advances in Engineering Software

Journal of Software Engineering and Applications

The International Journal on Software Tools for Technology
Transfer

Conferences

International Conference on Software Engineering (ICSE)

Working Conference on Reverse Engineering (WCRE)

International Conference on Automated Software Engineering

Software Engineering and Knowledge Engineering

Asia-Pacific Software Engineering Conference

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 43

As Table 1 illustrates, all highly ranked journals and conferences are included in this survey. Most
of the detection approaches are published in IEEE journal and conferences. In addition, two
Ph.D. dissertations are included in this survey (MARPLE and HEDGEHOG).

3. OVERVIEW OF DETECTION APPROACHES
Design pattern detection approaches could be classified based on different criteria and aspects.
This paper categorized the detection approaches based on their detection methodology and their
analysis style.

3.1 Detection Methodology
Since the introduction of design patterns in 1995, different approaches have been developed to
extract their instances from the source code. Most of these approaches use similar key steps
which aim to match the source code representation to the GoF’s catalog representation. The
detection methodologies could be categorized based on their key recovery steps into four main
groups: database query approaches, metrics-based approaches, UML structure, graph and
matrix-based approaches and miscellaneous approaches.

3.1.1 Database Query Approaches

Database query approaches transform the source code into an intermediate representation, such
as AST, ASG, UML structures, XMI, etc. SQL queries are used to extract pattern information from
the generated representation. The database in use affects the performance of the queries.
Unfortunately, database query approaches are not able to recover the instances of behavioral
patterns.

The approach presented by Rasool et al. [2] used annotations, regular expressions and database
queries to recover the instances of design patterns. The varying features of patterns are defined
and rules are applied to match these features with the source code elements. The time and the
search space are reduced by using appropriate semantics from large legacy systems. Rasool et
al. approach only recovers specific patterns and its accuracy and efficiency are not reported.

Stencel and Wegrzynowicz [3] present a pattern recognition method to detect non-standard
implementations of design patterns as well as the standard implementations. The Detection of
Diverse Design Pattern Variants tool (D3) has been developed to implement the detection
methodology. In addition, a simple program meta-model has been generated to hold program’s
core elements, such as attributes, operations and instances. D3 detected the creational
instances of design patterns from Java source code using static analysis and SQL. The execution
time is only reported, where D3 took 36 seconds to recover the creational instances from
JHotDraw.

Marek Vokac constructed a tool to recover specific design patterns from C++ source code [4].
The tool relies on the descriptions of the structural signatures associated with the chosen design
patterns. UNDERSTAND FOR C++ parser [5] has been used to generate a file that stores entities
and references’ data. The entities and references are transferred into an SQL database, which
contains tables that correspond to the entities and references. In addition, the SQL table involves
links to some files and metrics. The recognition of design patterns is done by a series of SQL
statements designed to look for a given structure. The experiments are only conducted on
Customer Relationship Management system.

SPOOL (Spreading Desirable Properties into the Design of Object-Oriented, Large Scale
Software Systems) is a joint research project between the University of Montreal and Bell
Canada. SPOOL environment comprises functionality for design composition, change effect
analysis and detection of design patterns [6].

SPOOL extracted different source code information, such as classes, structures, attributes,
parameters, return types, call actions, object instantiations and friendship relations. Design

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 44

patterns recovery aims to structure parts of class diagrams and resemble pattern diagrams.
SPOOL support manual and automatic design patterns recovery. Moreover, SPOOL introduces
the concept of the reference class (the most characteristics class that reflects the class behavior).
SPOOL environment was applied to three industrial systems. For confident reasons, System A
and System B are used to represent the first and second systems respectively. The third system
is ET++ v3.0. The efficiency and accuracy of SPOOL are not reported.

3.1.2 Metrics-Based Approaches
Metrics-based approaches compute program related metrics, such as aggregations, associations
and dependencies from different source code representations. In addition, different techniques
are applied to compare pattern metric values with source code metrics. Metrics-based
approaches reduce the search space through filtration.

MAISA (Metrics for Analysis and Improvement of Software Architecture) is a research tool
developed at the University of Helsinki [7]. MAISA represents the detection of design patterns as
a constraint satisfaction problem (CSP). In CSP, a large number of problems are represented as
a set of constraints over variables in a particular domain. Metric prediction attributes are stored in
a library and the user can select the pattern that he wants to search for. MAISA will search for the
selected pattern and provides each match as a potential candidate. MAISA comprises a UML
editor, pattern library, pattern miner, metric analyzer and reporting tool. MAISA was applied to
Nokia’s DX200 switching system and two instances of abstract factory design pattern are
extracted.

FUJABA is a design patterns detection tool where design patterns are defined as sub-patterns
[8]. FUJAPA applied transformation rules to capture structural and behavioral aspects of design
patterns. Transformation rules are organized into multiple levels of hierarchies. For example, level
one of the hierarchy holds the source code information. In addition, FUJABA used a combined
bottom up and top down strategy to apply the transformation rules. The detection algorithm uses
the assigned level numbers, which are associated with the transformation rules, to establish the
orders of applying the rules on ASG. In addition, FUJABA uses fuzzy values to accept or reject
the detected pattern elements (sub-patterns). The use of sub-patterns makes the detection
process incremental. Hence, relevant information can be achieved in a short time. FUJABA is a
semi-automatic tool, which needs the intervention of software engineer.

The approach presented by Antoniol et al. [9] generates an Abstract Object Language (AOL)
representation for the source code and the design of the system under study. Class level metrics,
such as a number of aggregations, associations and inheritances are computed as well.
Specifically, a brute force approach to identify all possible pattern candidates was adopted. To
identify all pattern candidates in a design containing N classes, all possible arrangements of the
classes and their relationships are computed. The experiments have been performed on a public
domain code and industrial code to assess the approach effectiveness. The reported precision
was 55%.

The approach in [10] combines both clustering based and pattern based reverse engineering
approaches. The approach shows that the occurrences of bad smells in the code of software
system can falsify the results of a metric based clustering. Moreover, the approach applies
pattern detection to an initial decomposition of the system to detect bad smells, which prevent the
clustering algorithm to perform a further decomposition.

The technique presented by Uchiyama et al. (hereafter, Uchiyama technique) uses source code
metrics and machine learning to detect design patterns [11]. By using Goal Question Metric
method (GQM), some source code metrics are selected to judge roles. Pattern specialists define
a set of questions to be evaluated and select some metrics to help to answer these questions.
Moreover, Uchiyama technique uses a hierarchical neural network simulator in which the input is
metric measurements of each role and the output is the expected role. The detection was done
by matching the candidate roles, which are produced by the machine learning simulator, to the

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 45

pattern structure definitions. Searching is looking for all possible combinations of candidate roles
that are in agreement with pattern structures. Uchiyama technique extracted inheritance, interface
implementation and aggregation relationships. The reported precision and recall rates were 63%
and 76% respectively.

3.1.3 UML Structure, Graph, and Matrix-Based Approaches
These approaches represent the structural and behavioral information of the targeted system as
UML structure, graph or matrix. Most of these approaches have good precision and recall rates
but they are not capable of handling the implementation variants of design patterns.

Seemann and Gudenberg in their work showed how to recover design information from Java
source code [12]. A compiler collects the relationships information (method calls and inheritance
hierarchies). The result of the compile phase is a graph. A filtering is made to the graph to detect
design patterns. Seemann and Gruenberg’s approach only detect Strategy, Bridge and
Composite design patterns.

DEPAIC++ (DEsgin PAtterns Identification of C++ programs) is a design patterns detection tool
developed by Espinoza et al. in 2002 [13]. DEPAIC++ is a canonical model formulated to analyze
the structure of C++ classes. In addition, DEPAIC++ verifies whether the code being analyzed is
using or not design patterns. DEPAIC++ composed by two modules that first transform C++ code
into a canonical form and then, recognize design patterns. However, DEPAIC++ did not analyze
the behavior of the source program. It detects design patterns starting from a structural analysis
of source code whereas some design patterns implement different behaviors in their solutions.

Columbus is a reverse engineering framework developed at the University of Szeged to analyze
C++ projects [14]. The extracted information is presented as Columbus schema for C++. The
schema represents C++ elements at different levels of abstraction. Moreover, the schema
description is represented using UML class diagram. The operation of Columbus is performed
using three plug-ins:

 Extraction plug-in, which analyzes the C++ source file and creates a file to store the

extracted information. Columbus reads the input files and passes them to the extractor,
which will generate the appropriate internal representation. Furthermore, the C++ extractor
uses a separate program called CAN (C++ ANalyzer) to parse the input source file.

 Linker plug-in: the main task of the linker plug-in is to build, in the memory, a complete
internal representation of the project. Columbus applied different filtering methods, such as
filtering using C++ elements categories, filtering by input source files and filtering by scopes.

 Exporter plug-in: the exporter plug-in exports the internal representation to a given output
format (for example, HTML, Graphic Exchange Language (GXL) and MAISA).

Columbus extraction capabilities were applied on three C++ projects: IBM Jikes Complier, Leda
Graph Library and Star Office Writer.

Design patterns detection using Similarity Scoring Approach (SSA) is a research prototype
developed in Java at the University of Macedonia to handle the problem of multiple variants of
design patterns [15]. SSA describes the design patterns to be detected, as well as the system
under study, as graphs. In addition, SSA represents all system static information as a set of
matrices.

SSA uses a graph similarity algorithm to detect design patterns by calculating the similarity of
vertices between the pattern and the system under study. To handle the system size problem,
SSA divides the system into a number of subsystems and the similarity algorithm is applied to the
subsystems instead of the whole system. SSA was applied to JHotDraw v5.1, JRefactory v2.6.24
and JUnit v3.7. Results were validated against the documentation of the systems.

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 46

Moreover, SSA uses matrices to represent the relationships between classes, which are directed
graphs that can be mapped into a square matrix. To preserve the validity of the results, SSA
similarity scores were bound within the range [0, 1]. In fact, SSA has a number of limitations. For
example, SSA assumes that no more than one characteristic for a given design pattern instance
is modified. To distinguish true positives from false positives, SSA uses a threshold value. For
example, the pattern roles that have two characteristics, a threshold equals to 0.5 is assigned. In
addition, SSA cannot detect the characteristics that are external to the subsystem boundaries
such as chain of delegations and SSA does not employ any dynamic information.

However, SSA shows that the use of similarity algorithm produces more accurate results than the
use of exact/inexact graph matching.

Design Patterns Discovery Matrix (DP-Miner) was developed at the University of Texas as a
research prototype to detect design pattern instances [16]. DP-Miner represents design pattern
structural characteristics as matrices and weights. Specifically, DP-Miner extraction methodology
relies on calculating class weights and construction of relationship matrix. The weight of each
class provides an indication of the number of attributes / operations in each class and its
relationship with other classes. DP-Miner extracted Adapter, Bridge, Strategy and Composite
instances from Java AWT package. Results validation is performed by manual tracing of Java
AWT package and by referring to its documentation.

The approach presented by Dongjin et al. involves a sub-patterns representation for the 23 GoF
design patterns – henceforth the sub-patterns approach - [17]. The source code and predefined
GoF patterns are transformed into graphs with classes as nodes and relationships as edges. The
instances of sub-patterns are identified by means of subgraph discovery. The joint classes have
been used to merge the sub-pattern instances. Moreover, the behavioral characteristics of
method invocations are compared with predefined method signature template of GoF patterns to
obtain final instances. The sub-patterns approach introduces a structural feature model to
represent GoF design patterns. The structural feature model extracted four main relationships:
inheritance, aggregation, association and dependency. In fact, the sub-patterns approach defined
15 sub-patterns to represent GoF design patterns. A class-relationship directed graph has been
used to represent the classes and their relationships.

The sub-patterns approach has been applied to nine open source systems and a Design Pattern
Instances Detection tool has been developed as well. Precision, recall and F-measure metrics
were used to assess the detection accuracy. Moreover, the execution time for the instances
recovery, structural analysis and behavioral analysis is calculated. As it was reported by the
authors, the sub-patterns approach spent longer time on method signature analysis than
structural analysis. The validation of the results is performed manually and the repository of
Perceron [18] has been used as a reference benchmark.

3.1.4 Miscellaneous Approaches
These approaches are not fit under any of the previous categories. Following is a brief description
of each approach of this category.

One of the first approaches to detect design patterns was presented by Kraemer and Prechelt in
1996 [19]. They tried to improve the software maintainability through the detection of design
patterns directly from C++ source code. Design patterns are represented as Prolog rules, which
are used to query a repository of C++ codes. The detection process focused on five structural
design patterns: Adapter, Bridge, Composite, Decorator and Proxy. Kraemer and Prechelt
approach was applied to four real projects: NME, ACD, LEDA and zApp class library. The
reported precision was 14-50%.

PTIDEJ (Pattern Traces Identification, Detection and Enhancement in Java) was developed at the
University of Montreal using Java under the Eclipse platform and since then, PTIDEJ has evolved
into a complete reverse engineering tool. PTIDEJ comprises several identification algorithms for

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 47

design patterns, micro patterns and idiom patterns [20][21]. PTIDEJ considers design pattern
detection as a constraint satisfaction problem (CSP) in which decisions are made during the
variable assignment phase. PTIDEJ used explanation-based constraint programming to identify
micro-architectures similar to design motifs. Micro-architecture describes the organization
(structure) of a set of classes of an object-oriented program.

CrocoPat is a tool for design pattern detection developed at the Technical University of Cottbus
[22]. It represents the software metamodel in terms of relations. Design patterns are described
by relational expressions. The main motivation of building CrocoPat is to handle the performance
problem of the previous detection tools. The metamodel presented by CrocoPat divides the
object-oriented program into packages, classes, methods and attributes. CrocoPat recovers
design pattern instances using three main steps:

 Extraction of source code data using a program analysis tool (sotograp). The extracted data

will be stored in a relation file.
 Creation of pattern definitions using pattern specification language. The CrocoPat’s

language uses relational algebra expressions to express the pattern definitions. The syntax
and semantic of the expressions are also defined. Specifically, CrocoPat defines U
(Universe) as a set of all values and X as a finite set of all attributes. A tuple t of X is a total
function t: X U. Val (X) is the set of all tuples of X.

 Extraction of the call, inherit and contain relationships.

CrocoPat is only evaluated in terms of performance. The reported results only show the detection
of the Composite and Mediator instances in Mozilla, JWAM and wxWindows.

System for Pattern Query and Recognition (SPQR) is a toolset for elemental design pattern
detection in C++ source code developed at the University of Carolina [23]. SPQR uses a logical
inference system to encode the rules, which will be combined later to form patterns using reliance
operators, and to encode the structural/behavioral relationships between classes and objects
using rho-calculus. SPQR is only applied to Killer Widget Application and the Decorator design
pattern is extracted. SPQR results are only validated in terms of efficiency (CPU times and
memory consumption).

Pattern Inference and Recovery Tool (PINOT) reclassifies the catalog of design patterns by intent
[24]. PINOT was built from Jikes, open source java compiler, and focuses on the detection of
common design patterns used in practice. To capture program intent, PINOT used static program
analysis techniques to recover design pattern instances from four open source projects: Java
AWT v1.3, JHotDraw v6.0, Java Swing v1.4 and Apache Ant v1.6. Structural driven patterns are
detected using inter-class relationships. During the structural analysis, the virtual delegations,
call dependencies, context interfaces, associations, aggregations, factory interfaces and singleton
class structures are identified. Furthermore, PINOT used data flow analysis on Abstract Syntax
Trees (ASTs) in terms of blocks to detect behavioral driven patterns. Method bodies are
represented as a Control Flow Graph (CFG). The CFG is scanned later to determine method
behaviors. The authors of PINOT only reported the required CPU times to detect the structural
and behavioral driven patterns.

DeMIMA (Design Motif Identification: Multilayered Approach) is a semi-automatic tool, developed
at the University of Montreal, that identifies microarchitectures similar to design motifs in the
source code [25]. DeMIMA involves three layers: two layers to generate source code abstract
model and class relationships and one layer to recognize design patterns from the generated
abstract model. DeMIMA was implemented in Java on top the of PTIDEJ framework [20]. In
addition, DeMIMA uses explanation-based constraint programming to handle the constraint
satisfaction problem. DeMIMA identifies micro-architectures similar to the design motifs by
transforming them into constraints that reflect the relationships between pattern’s participant
classes. The used constraints are inheritance constraint, strict transitive inheritance constraint,
transitive inheritance constraint, use constraint, ignorance constraint and creation constraint.

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 48

Design Patterns Recovery Environment (DPRE) is a design pattern recovery prototype developed
at the University of Salerno [26]. DPRE uses a two-phase approach to recover structural design
patterns from object-oriented code. Figure 1 shows DPRE recovery process. DPRE phase one
provides a coarse-grained level where design pattern candidates are identified by analyzing class
diagram information extracted during the preliminary analysis. In the second phase, codes of the
classes that participate in design pattern identification are examined to check their compliance
with the corresponding GoF patterns’ source code. The effectiveness of DPRE is characterized
by precision, which is ranging from 62% to 97%.

Zanoni introduced an Eclipse plug-in called MARPLE (Metrics and Architecture Reconstruction
Plug-in for Eclipse), which supports both the detection of design pattern instances and software
architecture reconstruction activities [27]. MARPLE tries to handle the variant problems of design
patterns detection through the detection of sub-components called “basic elements”. The
architecture of MARPLE involves five main modules that interact with each other through XML
data transfer.

The approach presented by Alnusair et al [28] - henceforth Sempatrec - uses ontology formalism
to represent the conceptual knowledge of the source code and semantic rules to capture the
structure and behavior of design patterns.

A tool named Sempatrec (SEMantic PATtern RECovery) has been developed as a plug-in for the
Eclipse IDE to implement the approach. Sempatrec processes the Java bytecode of the targeted
software, generates an RDF (Resource Description Framework) ontology and stores the ontology
locally in a pool.

Specifically, Sempatrec generates a source code representation ontology (SCRO) to provide an
explicit representation of the conceptual knowledge structure found in the source code. However,
the developed SCRO serves as a basis for design pattern recovery where a design pattern
ontology sub-model will be created. This sub-model extends the SCRO’s vocabularies and
involves an upper design pattern ontology that is further extended with a specific ontology for
each design pattern.

FIGURE 1: DPRE Recovery Process.

Table 2 summarizes the whole spectrum of design pattern detection approaches. Some of the
miscellaneous approaches are listed in table and do not appear in this section (Pat [19], KT [29],
DP++ [30], Kim and Boldyreff [31], Heuzeroth et al. [32], Philippow et al. [33], HEDGEHOG [34],

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 49

and Kaczor et al. [35]). However, ALL table approaches are involved in the statistical analysis of
this survey.

3.2 Analysis Style
Based on the analysis style performed, pattern detection approaches could be classified into
structural analysis approaches, behavioral analysis approaches and semantic analysis
approaches.

Structural analysis approaches detect the instances of design patterns based on the static parts
of the system under study. They explore inter-class relationships, method invocations and data
types.

Behavioral analysis approaches consider the execution behavior of the program. The behavioral
aspects of the program are extracted by using static and dynamic analysis techniques. The
behavioral analysis is useful since the structure of the patterns is not enough to provide a
fingerprint inside the source code. For example, State and Strategy patterns have similar
structures. Similarly, Chain of Responsibility, Proxy and Decorator patterns have identical
structures.

However, the possible variants of the same implemented behavior increase the number of false
positive instances.

Semantic analysis complements the structural and behavioral aspects to reduce the number of
false positive instances. Naming conventions and annotations were used to retrieve the role
information. Semantic information is important to distinguish between design patterns that have
identical structural and behavioral aspects, such as State, Strategy and Bridge. Table 2 shows
the analysis style used by each detection approach.

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 50

TABLE 2: Summary of detection approaches based on their detection methodology and analysis style.

4. ANALYSIS AND DISCUSSION
Design patterns are flexible design templates that may have several implementations. However,
design patterns are described informally, which may cause misunderstanding. New approaches

Detection
Methodology Tool/ Author Year

Analysis
Style R

Database Query
Approaches

Rasool et al. 2010 ST, SE [2]

D3 2008 ST, BE [3]

Marek Vokac 2006 ST [4]

SPOOL 1999 ST [6]

Metrics-Based
Approaches

MAISA 2000 ST [7]

FUJAPA 2002 ST,BE [8]

Antoniol et al. 1998 ST,BE [9]

Detten and Becker 2011 ST [10]

Uchiyama et al. 2014 ST,BE [11]

UML Structure, Graph
and Matrix Based

Approaches

Seemann and Gudenberg 1998 ST,SE [12]

DEPAIC++ 2002 ST [13]

Columbus 2002 ST [14]

SSA 2006 ST [15]

DP-Miner 2007 ST,BE,SE [16]

Dongjin et al. 2015 ST,BE [17]

Miscellaneous
Approaches

Pat 1996 ST [19]

PTIDEJ
2001
2004

ST [20][21]

CrocoPat 2003 ST [22]

SPQR 2003 ST [23]

PINOT 2006 ST,BE [24]

DeMIMA 2008 ST [25]

DPRE 2009 ST [26]

MARPLE 2012 ST,BE [27]

Sempatrec 2014 ST,SE [28]

KT 1996 ST [29]

DP++ 1998 ST [30]

Kim and Boldyreff 2000 ST [31]

Heuzeroth et al. 2003 ST,BE [32]

Philippow et al. 2005 ST [33]

HEDGEHOG 2005 ST,BE,SE [34]

Kaczor et al. 2006 ST [35]

Note: ST: Structural Analysis BE: Behavioral Analysis
 SE: Semantic Analysis R: Reference

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 51

and tools are continuously proposed with the new trend of applying new technologies. This
section aims to provide a comprehensive comparison between all design pattern detection
approaches in terms of system representation, case studies, recovered design patterns and
evaluation criteria.

4.1 Intermediate Representation of the Source Code
To the best of our knowledge, all the detection approaches in the literature are targeting the
source code of the system under study and avoid targeting the system’s design model to extract
the instances of design patterns. The design model does not provide any runtime data, which are
necessary for the extraction of design patterns (for example, the association relationships).
Normally, the design documents are inconsistent with the source code. Furthermore, most of the
design models are not publicly available. All these reasons made the source code better choice
than the design model to extract the instances of design patterns.

Most design pattern detection approaches use Abstract Syntax Tree (AST) representation to
generate the source code model. The source code model holds all the required information to
recover design pattern instances. Table 3 lists the intermediate representation used by different
detection approaches.

Some approaches used their own defined representation, such as [20], [25] and [35]. These
approaches defined PADL, Pattern and Abstract Level Description Language, to extract the
source code information. Two approaches did not generate an intermediate representation of the
source code, [11] and [31], and they used software metrics to gather source code information.
However, each detection approach may use the same representation in a different format. For
example, DPRE [26] uses AST representation to generate a graph that represents class
diagrams of the systems. On the other hand, Heuzeroth et al. [32] use AST representation to
define the static aspects of the patterns and the Temporal Logic Actions (TLA) to represent their
dynamic aspects.

4.2 Targeted Systems (Case Studies)
The majority of the detection approaches targeted open source codes that have been
programmed using Java or C++. Two approaches, MAISA [7] and DP-Miner [16], targeted UML
and XML open source systems. KT [29] applied its detection methodology on Smalltalk programs.
Only one approach, CrocoPat [22], conducted its experiments on both Java and C++ open source
systems. Figure 2 shows the programming languages used to program the targeted systems.

In fact, the majority of the detection approaches that have been developed after 2008 applied
their experiments on Java open source programs. This could facilitate the comparison between
detection approaches.

Furthermore, the detection approaches used different open source systems to evaluate their
methodologies. The most commonly used open source systems are JHotDraw v5.1, JRefactory
v2.6.24, JUnit v3.7, Java AWT package and QuickUML 2001. The selection of these approaches
were made by the detection approaches due to the following reasons:

 They used some well-known design patterns.
 The authors and the relevant literature indicate explicitly the implemented design patterns in

the documentation.
 They are open source and their codes are publicly available.
 They vary in size.

Table 4 lists the case studies used by different detection approaches to evaluate the detection
methodology. It appears clearly that there is no common agreement in the literature on the
suitable case studies to evaluate any new detection approach. In addition, the number of required
case studies is not clear. For example, some approaches use more than 5 case studies while

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 52

other approaches only use two case studies. DeMIMA [25] applied its methodology to 33
industrial components, but there is no information about them.

TABLE 3: The Intermediate representation used by existing approaches.

FIGURE 2: Programming languages used to program the targeted systems.

System
Representation

Author(s)/Tool

AST (Abstract Syntax
Tree)

Antoniol et al. [9], Detten and Becker [10],
PINOT [24], DPRE [26], MARLPE [27], KT [29],
Heuzeroth et al. [32], HEDGEHOG [34]

ASG (Abstract Syntax
Graph)

FUJABA [8]
Columbus [14]

UML, Graph
SPOOL [6], Seemann and Gudenberg [12], Dongjin et
al. [15], DP++ [30], Philippow et al. [33].

Matrix
SSA [15]
 DP-Miner [16]

Prolog
MAISA [7]
Pat [19]

PADL

PTIDEJ [20], DeMIMA [25], Kaczor et al. [35].

Metadata
D3 [3]
Marek Vokac [4]

Other representations

Canonical form (DEPAIC++ [13])
Annotations (Rasool et al. [2])

BDDs (CrocoPat [22])
OTTER (SPQR [23])
SCRO (Sempatrec [28])

No representation Uchiyama et al. [11], Kim and Boldyreff [31]

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 53

TABLE 4: Summary of the case studies conducted by detection approaches.

4.3 Recovered Design Patterns
Table 5 shows a summary of the recovered design patterns extracted by different detection
approaches. Most of the approaches successfully detect the Composite design pattern. This is
because its structure is easy to detect. On the other hand, the Memento and Interpreter design
patterns are only detected by three approaches, since they require dynamic analysis capabilities
for the extraction process. However, most of the detection approaches focused on a specific set
of design patterns.

Tool/ Author Case Studies

Rasool et al. [2] JHotDraw v6.1.2 and Apache Ant v1.6.2.

D3 [3] Applied Java Patterns and JHotDraw v6.0.b1

Marek Vokac [4] Customer Relationship Management system

SPOOL [6] ET++ and two telecommunication systems

MAISA [7] Nokia DX200 switching system

FUJAPA [8] Java AWT

Antoniol et al. [9] LEDA, Libg++, Galib, Mec, Socket and 8 small size industrial systems.

Detten and Becker [10] Common Component Modeling Example

Uchiyama et al. [11] Java library v1.6.0, JUnit v4.5 and Spring v2.5

Seemann and
Gudenberg [12],
DEPAIC++ [13]

Not mentioned

Columbus [14] IBM Jikes complier, Leda graph library and Star office writer

SSA [15] JHotDraw v5.1, JRefactory v2.6.24 and JUnit v3.7.

DP-Miner [16] Java AWT

Dongjin et al. [17]
Java AWT v5.0, JHotDraw v5.1, JUnit v3.8, Dom4J v1.6.1, Lizzy v1.1.1, Hodoku
v2.1.1, Barcode4j v2.1.0, RstpProxy v3.0 and Teamcenter

Pat [19] NME, LEDA and zApp

PTIDEJ [20][21]
Java AWT, Java.net packages, JHotDraw v5.1, JRefactory v2.6.24, JUnit v3.7,
Lexi v0.0.1α, Netbeans v1.0.x and QuickUML 2001

CrocoPat [22] Mozilla, JWAM and wxWindows

SPQR [23] Killer Widget Application

PINOT [24] Java AWT v1.3, JHotDraw v6.0, Java Swing v1.4 and Apache Ant v1.6

DeMIMA [25]
JHotDraw v5.1, JRefactory v2.6.34, JUnit v3.7, MapperXML v1.9.7, QuickUML
2001 and 33 industrial components

DPRE [26]
JHotDraw v5.1, Apache Ant v1.6.2, JHotDraw v6.0b1, QuickUML 2001, Swing
and Eclipse JDT components (Core v3.3.3 and User Interface v3.3.2).

MARPLE [27] 30 open source projects

Sempatrec [28] JHotDraw v5.1, JRefactory v2.6.24 and JUnit v3.7

KT [29] KT and three Smalltalk programs

DP++ [30] DTK library

Kim and Boldyreff [31] Three systems (no information about them)

Heuzeroth et al. [32] Java swing

Philippow et al. [33] Students projects

HEDGEHOG [34] AJP code example, pattern box and java language (v1.1 and v1.2)

Kaczor et al. [35] JHotDraw v5.1, QuickUML 2001 and Juzzle

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 54

Moreover, as Table 5 illustrates, only three approaches successfully detect all GoF design
patterns. Specifically, Kim and Boldyreff [31] extracted all GoF design patterns from three
systems which are programmed using C++. Unfortunately, there is no information about these
systems. In addition, Philippow et al. [33] extracted all GoF design patterns from student projects,
which are also programmed using C++. The main disadvantage of the previous two approaches
is their results validation. In fact, it is not clear how the extracted pattern instances are validated.
Dongjin et al. [17] extracted all GoF design patterns from Java open source projects by using
sub-patterns and method signatures. Dongjin et al. used the repository of Perceron [18] as a
benchmark to validate the extracted instances. However, the experimental results presented by
Dongjin et al. seem to be not accurate. For example, the reported experimental results involve
Java AWT and JHotDraw open source systems, which are not listed by Perceron. In addition,
Dongjin et al. approach recovered two Factory method instances (after behavioral analysis) from
JUnit and Percerons only reported one true positive Factory instance. Dongjin et al.’s approach
reported the precision and recall for the Factory method detection as 100%.

4.4 Evaluation Criteria
Precision and recall metrics have been used by most of the approaches to evaluate the accuracy
of the detection process. A few approaches reported the F-measure, which provides the harmonic
means of recall and precision. Accuracy differs from one approach to another since some
approaches extracted a few patterns and achieved high precision. The validation method, pattern
definitions and pattern variants could also affect the detection accuracy. The precision, recall and
F-measure are calculated as follows [36]:

Precision = [True Positives / (True Positives + False Positives)] %
Recall = [True Positives / (True Positives + False Negatives)] %
F-measure = 2 × [(Precision×Recall) / (Precision+Recall)] %

Where:
True positives: the number of instances, which are correctly detected.
False positives: the number of instances, which are incorrectly detected.
False negatives: the number of instances, which are incorrectly rejected.

The reported accuracy for the majority of detection approaches in the literature is presented in
Table 6. As Table 6 illustrates, the reported accuracy for most of the detection approaches is not
balanced (i.e. high precision and low recall or vice versa). The main reason of this would be the
high differences between the number of correctly detected instances and the number of missed
instances. Specifically, the unbalanced accuracy suggests that there is no trade-off between the
number of correctly detected instances and the number of rejected instances (missed instances).
Some approaches only reported the number of true positives and true negatives, such as D3 [3],
Marek Vokac [4] and Heuzeroth et al. [32]. On the other hand, some approaches used CPU
times, such as Rasool et al. [2], DP-Miner [16], CrocoPat [22], SPQR [23] and PINOT [24] to
evaluate their detection efficiency. For example, PINOT spent 66.79 seconds, 8.98 seconds,
10.68 seconds, and 12.58 seconds to detect design pattern instances from Swing, JHotDraw,
Java AWT and Ant respectively.

Furthermore, most detection approaches validated their results based on manual tracing of the
source code and they achieved high accuracy. On the other hand, only two approaches, Dongjin
et al. [17] and Sempatrec [28], validated their results based on design pattern repositories, such
as the repository of Perceron [18] and the design pattern detection tools benchmark platform [37].
Consequently, different accuracy values achieved by different approaches, since there is no
standard benchmark to validate the extracted design pattern instances.

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 55

TABLE 5: Summary of design patterns recovered by detection approaches.

R

[2
]

[3
]

[4
]

[6
]

[7
]

[8
]

[9
]

[1
0

]

[1
1

]

[1
2

]

[1
3

]

[1
4

]

[1
5

]

]1
6

]

[1
7

][
3

1
][

3
3

]

[1

9
]

 [
2

0
][

2
1

]

[2
2

]

[2
3

]

[2
4

]

[2
5

]

[2
6

]

[2
7

]

[2
8

]

[2
9

]

[3
0

]

[3
2

]

[3
4

]

[3
5

]

DP

SI            

FM             

AF         

BU    

PR       

AD                

BR            

CO                    

DE              

FA    

FL     

PR         

CoR   

CM    

IT   

IN 

ME    

MN 

OB          

ST        

SR            

TM            

VI         

Total 7

4

5

3

1

3

2

7

5

3

3

7

1
2

4

2
3

5

1
2

2

1

1
7

1
2

6

8

1
1

3

3

5

1
6

2

Note:
PR: Prototype FM: Factory Method BU: Builder AD: Adapter SI: Singleton
BR: Bridge DE: Decorator PX: Proxy CO: Composite FA: Façade
FL: Flyweight VI: Visitor TM: Template Method CM: Command
OB: Observer ST: State SR: Strategy IT: Iterator AF: Abstract Factory
CoR: Chain of Responsibility ME: Mediator MN: Memento IN: Interpreter
R: Reference DP: Design Pattern

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 56

TABLE 6: Summary of reported accuracy by detection approaches.

5. LESSONS LEARNED
This paper presented a comprehensive comparison between different design pattern detection
approaches. The lessons learned can be summarized as follows:

 Design patterns are described from different perspectives by different approaches, such as

structural aspects, behavioral aspects and semantic aspects.
 Current detection approaches use different tools to get the intermediate representation of

the targeted source code. This will directly affect the recovery process.
 The discovery tool of each approach only supports the discovery of specific patterns. Only a

few approaches successfully detected all GoF design patterns.
 Different approaches conduct experiments on different open source systems.
 Recall and precision were used to evaluate the accuracy of the detection process. Only a

few approaches reported F-measure, such as Dongjin et al. [17] and Sempatrec [28]. In
addition, some approaches measure the CPU times and memory consumptions to evaluate
their detection efficiency.

 No standard benchmark to validate the extracted design pattern instances. The available
benchmarks, to the best of our knowledge, are the repository of Perceron [18], the Design
Pattern Detection tools benchmark platform [37], P-MARt [38] and BEFRIEND [39].

6. CONCLUSION
Design patterns detection can help maintainers to understand the design of a program and help
to document the systems.

This paper presented the current state of the art of design pattern detection approaches.
Specifically, we presented a comparative study on design pattern detection approaches in terms
of detection methodology, analysis style, system representation, case studies, recovered design
patterns and evaluation criteria. The major contribution of this paper is the necessity to address

Tool/ Author Precision % Recall %

Rasool et al. [2] 94 92

Antoniol et al. [9] 30 Not Mentioned

Uchiyama et al. [11] 63 76

SSA [15] 100 66.7-100

Dongjin et al. [17] 68-100 73-100

Pat [19] 14-50 Not Mentioned

DeMIMA [25] 34 100

DPRE [26] 62-67 Not Mentioned

MARPLE [27] 76 63

Sempatrec [28] 61-82 88-90

Kim and Boldyreff [31] 43 Not Mentioned

HEDGEHOG [34] 100 85

D3 [3], Marek Vokac [4], SPOOL [6], MAISA [7],
FUJAPA [8], Detten and Becker [10], Seemann
and Gudenberg [12], DEPAIC++ [13], Columbus
[14], DP-Miner [16], PTIDEJ [20][21], CrocoPat
[22], SPQR [23], PINOT [24], KT [29], DP++
[30], Heuzeroth et al. [32], Philippow et al. [33],
Kaczor et al. [35]

Not Mentioned Not Mentioned

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 57

all detection approaches and tools. This will guide the researchers in the future to develop more
accurate detection tools. In addition, this survey will facilitate the comparison between different
detection approaches and any new detection approach, since there is no trusted benchmark to
evaluate the recovered design pattern instances. Most design pattern detection approaches
target open source systems which do not have proper documentation. It could be worthwhile to
conduct the experiments on industrial and commercial applications. In addition, disparity among
the results is noticed. The main reason could be the missing roles and the implementation
variants of design patterns. Precision and recall were used to evaluate the accuracy of the
detection process. However, the reported accuracy is not balanced (i.e. high precision and low
recall or vice versa). One possible solution is to use common formalized definition of GoF
patterns.

Finally, all detection approaches are working independently without any ability to integrate them
together. The research community should put efforts to build new approaches which may be
integrated with other existing approaches.

7. REFERENCES
[1] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design patterns:

 elements of reusable object-oriented software. Addison-Wesley Longman Publishing Co.,
 Inc., Boston, MA, USA, 1995.

[2] G. Rasool, I. Philippow, P. Mader, “Design Pattern Recovery Based on Annotations”.
 International Journal of advances in Engineering Software, Vol 41, Issue 4, 2010, pp. 519-
 526.

[3] K. Stencel, and P. Wegrzynowicz, “Detection of Diverse Design Pattern Variants”, 15th Asia-
 Pacific Software Engineering Conference, 2008, pp. 25-32.

[4] M. Vokac, “ An efficient tool for recovering design patterns from C++ code”, Journal of
 Object Technology, Volume 5, No. 1, 2006, pp. 139–157.

[5] Scientific Tool works Inc. Understand for C++, 2003.

[6] Rudolf K. Keller, Reinhard Schauer, Sebastien Robitaille, and Patrick Page; Pattern based
 reverse-engineering of design components. In ICSE 99: Proceedings of the 21st
 International Conference on Software Engineering, pages 226–235, Los Alamitos, CA, USA,
 1999. IEEE Computer Society Press.

[7] Paakki J., Karhinen A., Gustafsson J., Nenonen L. and Verkamo A.I., Software metrics by
 architectural pattern mining, Proceedings of the International Conference on Software:
 Theory and Practice (16th IFIP World Computer Congress), 2000, 325–332.

[8] Niere, J., Shafer, W., Wadsack, J.P., Wendehals, L., Walsh, J., 2002. Towards pattern
 design recovery. In: Proceedings of International Conference on Software Engineering
 (ICSE’02), Orlando, FL, USA, pp. 338–348.

[9] G. Antoniol, R. Fiutem, and L. Cristoforetti, “Design pattern recovery in object-oriented
 software”, In Proceedings of the 6th international workshop on program comprehension,
 1998, pp. 153–160.

[10] M. V. Detten, and S. Becker, “Combining Clustering and Pattern Detection for the
 Reengineering of Component-based Software Systems”, In Proceedings of the 7th
 International Conference on the Quality of Software Architectures, QoSA, pp. 23-32, 2011.

[11] Uchiyama, S., Kubo, A., Washizaki, H., and Fukazawa, Y. (2014). Detecting Design Patterns
 in Object-Oriented Program Source Code by Using Metrics and Machine Learning. Journal
 of Software Engineering and Applications, 7, 983-998. doi: 10.4236/jsea.2014.712086.

http://dx.doi.org/10.4236/jsea.2014.712086

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 58

[12] Jochen Seemann and Juergen Wolff von Gudenberg. Pattern-based design recovery of java
 software. In SIGSOFT ’98/FSE-6: Proceedings of the 6th ACM SIGSOFT international
 symposium on Foundations of software engineering, pages 10–16, New York, NY, USA,
 1998. ACM Press.

[13] Felix Agustin Castro Espinoza, Gustavo Nuez Esquer, and Joel Surez Cansino. Automatic
 design patterns identification of C++ programs. In EurAsia-ICT 02: Proceedings of the First
 EurAsian Conference on Information and Communication Technology, pages 816–823,
 London, UK, 2002. Springer-Verlag.

[14] Ferenc, R., Beszedes, A., Tarkiainen, M., Gyimothy, T.: Columbus—reverse engineering
 tool a schema for C++. 18th IEEE international conference on software maintenance
 (ICSM’02), pp. 172–181, October 2002.

[15] Tsantalis, N., Chatzigeorgiou, A., Stephanides, G., Halkidis, S.: Design Pattern Detection
 Using Similarity Scoring. IEEE Transaction on Software Engineering 32(11) (2006).

[16] Dong, J., Lad, D.S., Zhao, Y.: Dp-miner: Design pattern discovery using matrix. In: Proc.
 14th Annual IEEE International Conference and Workshops on the Engineering of
 Computer-Based Systems, ECBS 2007, pp. 371–380 (2007).

[17] Dongjin Yu, Yanyan Zhang, and Zhenli Chen: A comprehensive approach to the recovery of
 design pattern instances based on sub-patterns and method signatures. The Journal of
 Systems and Software 103 (2015) 1–16.

[18] Ampatzoglou, A.,Michou, O.,Stamelos, I.,2013b. Building and mining a repository of design
 pattern instances: practical and research benefits. EntertainmentComput.4, 131–142.

[19] Christian Kramer and Lutz Prechelt. Design recovery by automated search for structural
 design patterns in object-oriented software. In Working Conference on Reverse Engineering,
 pages 208–1996.

[20] Y.-G. Guéhéneuc and N. Jussien, “Using Explanations for Design Patterns Identification,”
 Proc. First IJCAI Workshop Modelling and Solving Problems with Constraints, C. Bessie`re,
 ed., pp. 57-64, Aug. 2001.

[21] Y.-G. Guéhéneuc, H. Sahraoui, and F. Zaidi, “Fingerprinting Design Patterns,” Proc. 11th
 Working Conf. Reverse Eng. (WCRE’04), Nov. 2004.

[22] Beyer, D., Lewerentz, C. CrocoPat: efficient pattern analysis in object-oriented programs. In:
 Proceedings of the International Workshop on Program Comprehension (IWPC’03),
 Portland, OR, USA, pp. 294–295 (2003).

[23] J. McC. Smith, and D. Stotts. SPQR: Flexible Automated Design Pattern Extraction from
 Source Code. In Proceedings of the 2003 IEEE International Conference on Automated
 Software Engineering, Montreal QC, Canada, October, 2003, pp. 215-224.

[24] Nija Shi and Ronald A. Olsson. Reverse engineering of design patterns from java source
 code. In ASE ’06: Proceedings of the 21st IEEE International Conference on Automated
 Software Engineering (ASE’06), pages 123–134, Washington, DC, USA, 2006. IEEE
 Computer Society.

[25] Y.-G. Guéhéneuc and G. Antoniol, “DeMIMA: A Multi-Layered Framework for Design Pattern
 Identification,” IEEE Trans. Software Eng., vol. 34, no. 5, pp. 667-684, Sept./Oct. 2008.

[26] Lucia, A.D., Deufemia, V., Gravino, C., and Risi, M., Design pattern recovery through visual
 language parsing and source code analysis, The Journal of Systems and Software, Vol 82,
 pp. 1177–1193, 2009.

Mohammed Ghazi Al-Obeidallah, Miltos Petridis & Stelios Kapetanakis

International Journal of Software Engineering (IJSE), Volume (7) : Issue (3) : 2016 59

[27] M. Zanoni, “Data mining techniques for design pattern detection,” Ph.D. dissertation,
 Universita degli Studi di Milano-Bicocca, 2012.

[28] Alnusair, A., Zhao, T., Yan, G., 2014. Rule based detection of design patterns in program
 code. Int.J.Softw.ToolsTechnol.Trans.16 (3), 315–334.

[29] Kyle Brown. Design reverse-engineering and automated design pattern detection in
 Smalltalk, Master’s thesis, North Carolina State University, 1996.

[30] Bansiya Jagdish: Automating Design-Pattern Identification. Dr. Dobb’s Journal. June 1998.

[31] Kim, H. and Boldyreff, C. (2000) A Method to Recover Design Patterns Using Software
 Product Metrics. In: Proceedings of the 6th International Conference on Software Reuse:
 Advances in Software Reusability, Vienna, 27-29 June 2000, 318-335.

[32] Heuzeroth, D., Holl, T., Hogstrom, G., Lowe, W., 2003. Automatic design pattern detection.
 In: Proceedings of International Workshop on Program Comprehension (IWPC’03), Portland,
 OR, USA, pp. 94–103.

[33] Philippow, I., Streitferdt, D., Riebish, M., Naumann, S., 2005. An approach for reverse
 engineering of design patterns. Software System Modeling 4 (1), 55–79.

[34] A. Blewitt. Hedgehog: Automatic Verification of Design Patterns in Java.
 PhD thesis, School of Informatics, University of Edinburgh, 2005.
 http://www.bandlem.com/Alex/Papers/PhDThesis.pdf.

[35] Kaczor O. Guéhéneuc Y-G, Hamel S. Efficient identification of design patterns with bit-
 vector algorithm. In: Proceedings of the 10th European conference on software maintenance
 and reengineering, Bari, Italy; 22–24 March 2006. p. 184–93.

[36] W.B Frakes and R.Baeza, Yates, Information Retrieval: Data Structure and Algorithms,
 Prentice Hall, 1992.

[37] Arcelli Fontana, F., Caracciolo, A., Zanoni, M., 2012. DPB: A benchmark for design pattern
 detection tools. In: Proceedings of the 16th European Conference on Software Maintenance
 and Reengineering (CSMR’12). IEEE Computer Society, Szeged, Hungary, pp. 235–244.
 doi:10.1109/C.

[38] Y.-G. Guéhéneuc, “P-MARt: Pattern-like micro architecture repository,” Proceedings of the
 1st EuroPLoP Focus Group on Pattern Repositories, 2007.

[39] Fülöp, L. J., Hegedus, P., & Ferenc, R. (2008). BEFRIEND - A benchmark for evaluating
 reverse engineering tools. Periodica Polytechnica, Electrical Engineering, 52(3-4), 153-162.
 DOI: 10.3311/pp.ee.2008-3-4.04.

http://www.bandlem.com/Alex/Papers/PhDThesis.pdf
http://dx.doi.org/10.3311/pp.ee.2008-3-4.04

