
Yuma Yamano, Toshihiko Ando & Keishi Okamoto

International Journal of Software Engineering (IJSE), Volume (8) : Issue (3) : 2020 27

A Tool Generating a C# Code with Contracts of Code Contracts
from a VDM++ Model with Conditions

Yuma Yamano a1811531@sendai-nct.jp
Department of Information Systems
National Institute of Technology, Sendai College
Sendai, 989-3128, Japan

Toshihiko Ando tando@sendai-nct.ac.jp
Department of Information Systems
National Institute of Technology, Sendai College
Sendai, 989-3128, Japan

Keishi Okamoto okamoto@sendai-nct.ac.jp
Department of Information Systems
National Institute of Technology, Sendai College
Sendai, 989-3128, Japan

Abstract

As systems rely on software, the reliability of the software is required. Formal methods are
prominent ways to improve the reliability of software. Formal specification is one of the formal
methods and offers a formal specification language based on mathematics and computer
science. With this method, the ambiguity of the specification can be decreased, and verification
can be facilitated. In development based on formal specification, specifications are formally
described and then a code is generated from it. This generation is done manually in some cases,
but it is done automatically by a tool in some cases. Generally, from the viewpoint of execution
efficiency, etc., the generated code is modified, so it is necessary to verify whether the code
meets the conditions in the specification. However, this task is manual in many cases, then it is
time-consuming and error-prone. In this paper, we introduce a tool to generate a code in the
programing language C# from a specification in the formal specification language VDM++. The
tool also translates conditions of a specification into contracts of the library Code Contracts of #C.
The above problem will be solved with this tool.

Keywords: Formal Methods, Code Generation, VDM++, C#, Code Contracts.

1. INTRODUCTION
Our society is highly dependent on software-intensive systems, for instance, automotive, medical
devices, etc. Therefore, we require reliability, safety, security, etc. to the systems. However, the
specification description and implementation of a software-intensive system are becoming
complicated and complex as the system is becoming so. Formal methods can support these
tasks to ensure a system to be reliable, safe, secure, etc. Because we can describe and verify
target systems in a mathematical way with formal methods.

In this paper, we focus on formal specification while formal methods contain model checking,
theorem proving, etc. A formal specification consists of a formal specification language and
verification methods. We can describe a formal specification of a target system in a formal
specification language so that the resulting specification has no ambiguity, can be automatically
verified, and is easy to validate. Moreover, some formal specification tools can generate code in a
programming language from a formal specification in a specification language. VDM (Vienna
Development Method) [1] [2] is one of the formal specifications. Moreover, VDM is called a

Yuma Yamano, Toshihiko Ando & Keishi Okamoto

International Journal of Software Engineering (IJSE), Volume (8) : Issue (3) : 2020 28

lightweight approach [3] because it focuses on validation by testing, not on theorem proving.
Many large-scale systems were developed with VDM including the contactless IC system,
“FeliCa” [4].

VDM has two specification languages, VDM-SL and VDM++ [5]. With these languages, we can
describe a specification of a target system, which is also called a model. The specification
contains conditions that are constraints for the system besides the description of the intended
behavior of the system. Thus, we can verify whether the model satisfies the conditions with tools,
for instance, VDM-Tools [2] and Overture [6]. On the other hand, these tools can generate a
C++/Java code from a VDM model. These tools can also translate certain conditions in a VDM
model, for instance, a condition that "input of a function is less than 0". Then, we can verify the
resulting source code with a condition corresponding to a condition in a VDM model. Thus, we
can easily assure that the source code meets a specification. However, certain kind of conditions
in a VDM model is not supported to be translated to elements in C++/Java code. Therefore, it is
useful to extend the kinds of conditions in a formal specification which can be translated to
conditions in code. Moreover, it is also useful to be able to generate a code in various
programming languages from a formal specification in various formal specification languages.

There are related researches that develop a tool generating code in a programming language
with conditions from a specification with conditions in a formal specification language. In some
papers [8] [9], authors propose generation from the specification language Event-B [7] to code in
a programming language. In [8], authors developed a tool that generates code in the
programming language Dafny [9] from a specification in Event-B. In Dafny, we can describe
conditions for a method, a function, an iterator, and a loop. These conditions are described as
elements of Dafny, namely requires, ensures, invariant. The Dafny tool is an SMT-based verifier
and runs as part of the compiler. In the paper, the tool has a restriction that descriptions in an
input Event-B model must be enough refined so that data types and operators in the descriptions
have corresponding counterparts in Dafny. Because some mathematical notations in Event-B are
too abstract so they have no counterpart in Dafny. In [10], authors present translation rules from
Event-B models to JML-annotated Java codes, implement translation as an EventB2Java tool
and show two case studies of EventB2Java. On the other hand, in [11] [12], authors propose
code generation from the specification language VDM-SL [5] to code in a programming language.
In [11], the authors proposed a method generating C# code from a VDM-SL model, where C# [13]
is an object-oriented programming language of .NET framework and supports a language
extension Code Contract [14] [15] [16] to describe and verify conditions in code. They also
implemented the method as a prototype for the Overture tool with which conditions in a VDM-SL
model are translated to contracts in Code Contracts. In the paper, the authors state one of future
works is to support the object-oriented VDM++ [5] and handle the translation of object aliasing,
method overloading, multiple class inheritance, and concurrency. In [12], authors implement a
tool to generate a JML-annotated Java code from a VDM-SL model.

It is important to implement a tool to generate a code with conditions of the programming
language C# from a VDM++ model with conditions. Indeed, one of the authors has developed a
prototype that generates code in C# with conditions from a formal specification with conditions in
VDM++ [17]. However, this prototype has restrictions. The main restriction is the same as the
restriction of VDM-Tools and Overture, namely the prototype cannot translate a post-condition of
an operation to a description in C#. It is important to overcome this limitation because it is a fatal
flaw for code verification. On the other hand, the benchmark results of [10] show that Code
Contracts of C# is about 120 times faster than OpenJML [18] of Java. Therefore, C # is a
promising programming language for generated source codes. A tool to generate a C# code with
conditions from a VDM-SL model with conditions has been proposed in [10]. However, since the
language elements of VDM-SL and VDM++ are different, it is necessary to propose a translation
rule of a feature in VDM++ such as multiple class inheritance.

In this paper, we introduce a tool generating a C# code having elements of Code Contracts from
a VDM++ model having pre-conditions, post-conditions, and invariants. Specifically, we introduce

Yuma Yamano, Toshihiko Ando & Keishi Okamoto

International Journal of Software Engineering (IJSE), Volume (8) : Issue (3) : 2020 29

additional translation rules of 1) a post-condition of an operation, 2) a condition for a type and 3)
multiple inheritances of types in a VDM++ model. As a result, we extend the range of translatable
descriptions in [17]. We also show the validity of the tool, in particular the correctness of the tool.
More precisely, we show that our tool generates a correct code corresponding to an input VDM++
model by showing that input specifications and the generated codes pass/fail equivalent test
cases.

Our tool can translate elements of VDM++ into C# elements. In particular, our tool can translate a
post-condition that cannot be translated by the tool in [17]. Our tool can also translate "multiple
inheritances of types" which is one of the future works of [10]. On the other hand, an
automatically generated code may be manually modified to improve execution efficiency.
However, manual modification is error-prone, so the modified code must be verified to meet the
specifications. Our tool can support a software developer to verify whether the manually modified
C# code meets a VDM++ specification by automatic generation of conditions in the C# code.

The structure of the following chapters is as follows. In Section 2, we introduce VDM++ and Code
Contracts. VDM++ is an input language and Code Contracts is an extension of an output
language C#. In Section 3, we introduce our tool generating a C# code having contracts from a
VDM++ model having conditions. In Section 4, we show the validity of our tool. More precisely,
we show that input VDM++ models and output C# models pass/fail equivalent test cases. Finally,
we conclude our paper in Section 5.

2. PRELIMINARIES
In this section, we introduce a formal specification language VDM++ and a library Code Contracts
of .NET Framework language. A VDM++ model is an input and a C# code, which is a .NET
Framework language, is an output of our tool. There are elements of VDM++ to describe
conditions for a target system. But there are no elements of C# to do that. Thus, we use elements
of Code Contracts for that.

2.1. VDM++
In this subsection, we introduce the specification language VDM++ and show an example of
generation from a VDM++ specification to C# code.

VDM is a lightweight formal method and has two specification languages, namely VDM-SL and
VDM++. VDM++ is object-oriented while VDM-SL is not object-oriented. Since VDM is object-
oriented, it has many common elements with object-oriented programming languages. For
instance, VDM++ and C# have class syntax. This similarity will help us to define a translation
from a VDM++ element to a C# element.

In VDM-SL and VDM++, we can describe the functions and operations of a system. Moreover, we
can also describe a condition required for a system as a pre-condition, a post-condition, and an
invariant. A pre-condition (a post-condition) is a condition that must be satisfied just before
(respectively just after) a function or an operation is called. An invariant is a condition that must
be always satisfied.

Figure 1 shows an example of a VDM++ model. In Figure 1, we define an operation Decrement
which decrements a value of Count by 1. The description "pre Count >= 1" represents a pre-
condition meaning that before executing Decrement, the value of Count must be greater or equal
to 1. The description "post Count = Count~ - 1" represents a post-condition meaning that after
executing Decrement, the value of Count is equal to the value - 1 of Count before the execution.

Yuma Yamano, Toshihiko Ando & Keishi Okamoto

International Journal of Software Engineering (IJSE), Volume (8) : Issue (3) : 2020 30

class Counter
values
 public static InitValue : nat = 10;
instance variables
 public Count : nat := InitValue;
operations
 public Decrement : () ==> ()
 Decrement() == (
 Count := Count - 1;
)
 pre Count >= 1
 post Count = Count~ - 1;
end Counter

FIGURE 1: An Example of a VDM++ Model.

VDM-Tools and Overture can generate a C++/Java code from a VDM++ model. Figure 2 shows a
part of a Java code generated by VDM-Tools from the VDM++ model of Figure 1.

public class Counter {
 …
 public void Decrement () throws CGException {
 if (!this.pre_Decrement().booleanValue())
 UTIL.RunTime("Precondition failure in
Decrement");
 Number rhs_4 =
Long.valueOf(Count.longValue() - 1);
 if (!UTIL.IsInteger((Object)rhs_4))
 UTIL.RunTime("Incompatible type");
 Count = TIL.NumberToLong(UTIL.clone(rhs_4));
 }
 public Boolean pre_Decrement ()
throws CGException {
 return Boolean.valueOf(Count.longValue() >= 1);
 }
}

FIGURE 2: The Java Code Generated by VDM-Tools.

In the VDM++ model of Figure 1, the operation Decrement has a pre-condition and a post-
condition. However, the generated Java code of Figure 2 has only a pre_Decrement method,
which corresponds to the pre-condition in VDM++ model, since those tools do not translate a
post-condition of an operation in a VDM++ model to an element in a Java/C++ code.

2.2. Code Contracts
In this subsection, we briefly introduce Code Contracts and show an example of C# code with
contracts of Code Contracts.

Code Contracts is a library to describe a contract, which is a condition for a system, in code, and
is also a tool to verify contracts in .NET Framework language. With Code Contracts, we can
specify contracts, namely pre-conditions, post-conditions, and invariants in .NET Framework
language code, for instance, C# code.

Figure 3 shows an example of C# code with contracts of Code Contracts. In Figure 3, a method
PosSubtract is defined. PosSubtract is a subtraction whose output must be greater than 0. And a

Yuma Yamano, Toshihiko Ando & Keishi Okamoto

International Journal of Software Engineering (IJSE), Volume (8) : Issue (3) : 2020 31

pre-condition is defined with a Contract.Requires method of Code Contracts in Figure 3. This
Contract.Requires method means that the value of the first argument must be greater than the
value of the second argument. Thus, the Main method fails because it calls the PosSubtract with
arguments a and b such that a <= b. Indeed, static verification with Code Contracts will show us
an error message in this case.

static void Main(string[] args) {
 int a = 2;
 PosSubtract(a, 3);
}

static int PosSubtract(int a, int b) {
 Contract.Requires(a > b);
 Contract.Ensures (Contract.Result<int>() > 0);
 return a - b;
}

FIGURE 3: An Example of C# Code with Code Contracts.

3. A GENERATION TOOL FROM VDM++ TO C#
In this section, we introduce our tool generating a C# code having contracts from a VDM++ model
having conditions. Our tool translates a condition in a VDM++ model to a contract of Code
Contracts in C# code. VDM++ and C# have many similarities since they are object-oriented
languages. Moreover, a condition of VDM++ has a counterpart, which a contract, of Code
Contracts. Then, a naive translation is proposed in [17] based on these similarities. However,
covered elements by the translation are too restricted, we need to additionally define translation
rules. We introduce the whole generation process of our tool in Subsection 3.1 and show some
translation rules of our tool in Subsection 3.2.

3.1. Generation Process of Our Tool
Our tool generates a C# code (.cs files) from a VDM++ model (.vdmpp files). In this subsection,
we introduce a generation process of our tool. This generation process consists of the following
three steps:

(A) generating a VDM++ abstract syntax tree from a VDM++ model,
(B) translating a C#/Code Contracts abstract syntax tree from the VDM++ abstract syntax tree
and
(C) generating C# code from the C# abstract syntax tree.

We adopt two existing tools to execute (A) and (C). First, we adopt VDMJ [19] at step (A). VDMJ
is an open-source tool in Java and can analyze the VDM++ model syntax. Thus, we use VDMJ to
get a VDM++ abstract syntax tree from a VDM++ model. Second, we adopt the .NET compiler
platform Roslyn [20] and MSBuild for (C). Roslyn is API for .NET compiler functions. With Roslyn
and MSBuild, we can generate C# code from a C# abstract syntax tree. The rest is a tool to
execute (B).

Based on [17], we define a translation rule from an element of VDM++ to an element of C# and
Code Contracts for (B). However, the translation rule in [17] is too restricted, so we must
additionally define translation rules. In particular, we additionally define a correspondence
between an element of VDM++ and an element of C# and Code Contracts and show a part of this
correspondence in Table 1. We will show details of some translation rules in the next subsection.
Then, we implement a function that recursively translates from a VDM++ abstract syntax tree to a
C# abstract syntax tree.

Yuma Yamano, Toshihiko Ando & Keishi Okamoto

International Journal of Software Engineering (IJSE), Volume (8) : Issue (3) : 2020 32

VDM++ C#

class class / interface

function definitions method

operation definitions method

value definitions member variable

type definitions inner class

instance variable definitions member variable

pre-conditions Contract.Requires method

post-conditions Contract.Ensures method

invariants Contract.Invariant method

TABLE 1: A Correspondence between Elements of VDM++ and Elements of C# and Code Contracts.

3.2. Translation Rules of Our Tool
In this subsection, we show some translation rules for our tool.

VDM++ and C# have many similarities since they are object-oriented languages, and naive
translation rules are shown in [17]. However, there are still some gaps between them. We fill
these gaps. We show translation rules of 1) a post-condition of an operation, 2) a condition for a
type and 3) multiple inheritances of types in a VDM++ model.

1) We define a translation rule from a post-condition of an operation in a VDM++ model to a
Contract.Ensures method of Code Contracts in C# code. Because, in Java, after calling a method
having a variable x, we cannot refer to the value that is assigned to x before the method is called.
In contrast, we can refer it to C# with Code Contracts.

Figure 5 shows the C# code generated from the VDM++ model of Figure 1 by our tool. While the
generated Java code of Figure 2 does not contain a contract corresponding to the post-condition
in the VDM++ model of Figure 1, the generated C# code of Figure 5 contains a contract (a
Contract.Ensures method) corresponding to the same post-condition.

public class Counter {
 public static readonly uint InitValue = 10;
 public uint Count = InitValue;

 public void Decrement() {
 Contract.Requires(Count >= 1);
 Contract.Ensures(Contract.Equals(Count, Contract.OldValue(Count) - 1));
 Count = Count - 1;
 }
}

FIGURE 5: The Generated C# Code from the VDM++ Model of Figure 1.

2) We define a translation rule from a VDM++ type definition to a C# inner class. Because a
VDM++ type definition often has invariants and an invariant of a VDM++ type definition can be
translated to a C# method in a C# inner class.

Yuma Yamano, Toshihiko Ando & Keishi Okamoto

International Journal of Software Engineering (IJSE), Volume (8) : Issue (3) : 2020 33

Figure 6 shows a VDM++ model that contains a type definition, and Figure 7 shows the
generated C# code from the VDM++ model of Figure 6 by our tool. In Figure 6, the VDM++ class
TypeTest contains the type definition “public Pin = int” with an invariant “inv n == n < 30”. In this
case, our tool generates a C# class TypeTest and a C# inner class Pin in the C# class TypeTest
such that the inner class Pin contains an ObjectInvariant method corresponding to the invariant in
the VDM++ type Pin.

class TypeTest

types
public Pin = int
inv n == n < 30;

end TypeTest

FIGURE 6: A VDM++ Model with a Type Definition.

public class TypeTest {
public class Pin : VDMUtil.IType, ICloneable{
 public Pin(long value) {
 Value = value;
 }

 public long Value { set; get; }

 override public bool Equals(object ob) {
 if (null == ob) {
 return false;
 }

 if (ob.GetType() != this.GetType())
 return false;
 if (this.Value != (ob as Pin).Value)
 return false;
 return true;
 }

 override public int GetHashCode() {
 return this.Value.GetHashCode();
 }

 [ContractInvariantMethod]
 private void ObjectInvariant() {
 Contract.Invariant(Value < 30);
 }
 }
}

FIGURE 7: The generated C# code from the VDM++ model of Figure 6.

3) We define a translation rule from a VDM++ class to a C# class or a C# interface. In VDM++, a
class can inherit multiple classes. In contrast, in C#, a class cannot inherit multiple classes while
a class can inherit multiple interfaces. However, certain VDM++ classes cannot be translated into
a C# interface. Thus, referring to the result of [21], we define the following four conditions of a
VDM++ class to determine whether a VDM++ class can be translated into a C# interface:

Yuma Yamano, Toshihiko Ando & Keishi Okamoto

International Journal of Software Engineering (IJSE), Volume (8) : Issue (3) : 2020 34

 all functions and operations defined in the class having a body are subclass responsibility,
 all functions and operations in the class are public,
 there are no instance variable definition and value definition in the class and
 all superclasses of the class are translated to C# interfaces.

When our tool detects a VDM++ class satisfying these conditions, it allows a user to choose a C#
interface and a C# class as a result of the translation of the VDM++ class. Moreover, if a VDM++
class contains a function or an operation that is designated as subclass responsibility, the VDM++
class is translated to a C# abstract class.

Figure 8 shows a VDM++ class satisfying the above four conditions, and Figure 9 shows the
translated C# interface while Figure 10 shows the translated C# class.

class ITest

operations
public op : nat ==> nat
op(a) == is subclass responsibility;

functions
max: int * int -> int
max(x, y) == is subclass responsibility;

end ITest

FIGURE 8: A VDM++ Class Satisfying the Four Conditions.

public interface ITest {

 [Pure]
 long max(long x, long y);

 ulong Test(ulong a);
}

FIGURE 9: The C# Interface Translated from the VDM++ Class of Figure 8.

public abstract class ITest {

 [Pure]
 public abstract long max(long x, long y);

 public abstract ulong Test(ulong a);
}

FIGURE 10: The C# Class Translated from the VDM++ Class of Figure 8.

4. VALIDITY OF OUR TOOL
In this section, we show the validity of our tool, in particular, the correctness of translation rules.
To show the correctness of the translation, it is enough to show that an input VDM++ model and
the generated C# code are equivalent. More precisely, we show that a VDM++ model and the
generated C# code pass/fail equivalent test cases. Moreover, we show the capability of
translation of various language elements. In actual development, we make abstract specifications
and then refine it to concrete specifications. Thus, we adopt an abstract (naïve) specification S1
that is easy for humans to understand and a concrete (efficient) specification S2 that is difficult for

Yuma Yamano, Toshihiko Ando & Keishi Okamoto

International Journal of Software Engineering (IJSE), Volume (8) : Issue (3) : 2020 35

humans to understand as input models. We show that the specification S1 (S2) and the
generated code C1 (respectively C2) pass/fail equivalent test cases. Moreover, S1 and S2 are
proved to be logically equivalent in [22], we show that S1, S2, C1, C2 pass/fail equivalent test
cases. We conduct testing for a VDM++ model with VDM-Tools, and for the generated C# code
with Visual Studio.

We adopt example C codes in [22] (Figure 11 and Figure 12) as sources of input VDM++ models.
These C codes are codes to identify the position of the first 1 bit in a word. They are proved to be
equivalent, which means that they generate the same output for the same input. The code in
Figure 11 is a naive implementation and the code in Figure 12 is an efficient implementation.

uint32_t ffs_ref(uint32_t word) {
 int i = 0;

 if(!word)
 return 0;

 for(int cnt = 0; cnt < 32; cnt++)
 if(((1 << i++) & word) != 0)
 return i;

 return 0; // notreached
}

FIGURE 11: A Source of an Input VDM++ Model (a Naïve Implementation).

uint32_t ffs_imp(uint32_t i) {
 char n = 1;
 if (!(i & 0xffff)) { n += 16; i >>= 16; }
 if (!(i & 0x00ff)) { n += 8; i >>= 8; }
 if (!(i & 0x000f)) { n += 4; i >>= 4; }
 if (!(i & 0x0003)) { n += 2; i >>= 2; }

 return (i) ? (n+((i+1) & 0x01)) : 0;
}

FIGURE 12: A Source of an Input VDM++ Model (an Efficient Implementation).

We construct a VDM++ model in Figure 13 (Figure 14) of a C code in Figure 11 (respectively
Figure 12). Then we generate the C# code in Figure 15 (Figure 16) from the model in Figure 13
(respectively Figure 14) with our tool.

public ffs_ref : Byte ==> int
ffs_ref(k) == (
tmp := 0;
if k.isZero() then return 0;
for cnt = 0 to 31 by 1 do (
 one := new Byte(false, false, false, true);
 one.shiftLeft(tmp);
 tmp := tmp + 1;
 if not one.AND(k).isZero()
 then return tmp;
);
return 0;
);

FIGURE 13: A VDM++ Model of the Code of Figure 11.

Yuma Yamano, Toshihiko Ando & Keishi Okamoto

International Journal of Software Engineering (IJSE), Volume (8) : Issue (3) : 2020 36

public ffs_imp : Byte ==> int
ffs_imp(i) == (
tmp := 1;

if i.AND(new Byte(true, true, true, true)).isZero() then (
tmp := tmp + 4;
i.shiftRight(4);
);

if i.AND(new Byte(false, false, true, true)).isZero() then (
tmp := tmp + 2;
i.shiftRight(2);
);

if i.isZero() then return 0;
if i.b1 then return tmp;

return tmp + 1;
);

FIGURE 14: A VDM++ Model of the Code of Figure 12.

public long ffs_ref(Byte k) {
 tmp = 0;

 if (k.isZero())
 return 0;

 for (var cnt = 0; cnt <= 31; cnt += 1) {
 one = new Byte(false, false, false, true);

 one.shiftLeft(tmp);
 tmp = tmp + 1;

 if (!one.AND(k).isZero())
 return tmp;
 }

 return 0;
}

FIGURE 15: The Generated C# Code from the VDM++ Model of Figure 13.

public long ffs_imp(Byte i) {
 tmp = 1;

 if (i.AND(new Byte(true, true, true, true)).isZero()) {
 tmp = tmp + 4;
 i.shiftRight(4);
 }

 if(i.AND(new Byte(false,false,true,true)).isZero()) {
 tmp = tmp + 2;
 i.shiftRight(2);
 }

Yuma Yamano, Toshihiko Ando & Keishi Okamoto

International Journal of Software Engineering (IJSE), Volume (8) : Issue (3) : 2020 37

 if (i.isZero())
 return 0;
 if (i.b1)
 return tmp;

 return tmp + 1;
}

FIGURE 16: The Generated C# Code from the VDM++ Model of Figure 14.

We write test cases for VDM++ models and translated them to equivalent test cases for C#
codes. Then, we execute the equivalent test cases to VDM++ models and C# codes. Thus, we
find that all the models and codes pass/fail the equivalent test cases. This result shows that the
translation rules in our tool will be valid.

5. CONCLUSION AND FUTURE WORK
In this paper, we introduce a generation tool from VDM++ to C# with Code Contracts. In
particular, we additionally define translation rules from an element of a VDM++ model with
conditions to an element of C# code with contracts of Code Contracts. Moreover, we show the
validity of our tool by showing that input VDM++ models and the generated C# codes pass/fail
equivalent test cases.

Our generation tool supports software developers in the following two ways. First, our generation
tool allows C# as a new choice of a target programing language of generation from VDM++.
While, with existing tools [2] [6], it is possible to generate from VDM++ only to Java and C++.
Second, our tool can translate pre-conditions, post-conditions, and invariants in a specification (a
VDM++ model) into contracts of Code Contracts in C# code. While the existing tool [17] does not
support to translate a post-condition of an operation. Thus, since conditions in a specification are
translated into a contract in the generated program, it is easy to check whether the program (the
C# code) meets conditions in a specification (a VDM++ model).

We have two future works. First, we will increase the number of translatable VDM++ elements,
including the record type of VDM++. It will enhance the capability of the translation of language
elements of VDM++. Second, we will define translation rules from conditions of a VDM++ model
to properties of property-based testing [23] as the conditions will also contribute to defining
properties of property-based testing.

6. REFERENCES
[1] J. Fitzgerald, P.G. Larsen. Modelling Systems – Practical Tools and Techniques in
 Software Development. Cambridge: Cambridge University Press, 2009, pp. 1-228.

[2] Kyushu University. “FM VDM”, Internet: fmvdm.org/, [Aug. 28, 2020].

[3] S. Agerholm, P.G. Larsen. “A Lightweight Approach to Formal Methods,” in Applied Formal
 Methods — FM-Trends 98. FM-Trends 1998. Lecture Notes in Computer Science, vol. 1641.
 1999, pp. 168-183.

[4] T. Kurita, F. Ishikawa and K. Araki. “Practices for Formal Models as Documents: Evolution of
 VDM Application to Mobile FeliCa IC Chip Firmware,” in Formal Methods - 20th International
 Symposium, 2015, pp. 593-596.

[5] P.G. Larsen, K. Lausdahl, N. Battle, J. Fitzgerald, S. Wolff, S. Sahara, M. Verhoef, P.W.V.
 TranJørgensen, T. Oda, P. Chisholm. “VDM-10 Language Manual.” Internet:
 overturetool.org/documentation/manuals.html [Oct. 5, 2020].
[6] “Overture Tool.” Internet: overturetool.org, [Aug. 28, 2020].

Yuma Yamano, Toshihiko Ando & Keishi Okamoto

International Journal of Software Engineering (IJSE), Volume (8) : Issue (3) : 2020 38

[7] J.R. Abrial. Modeling in Event-B: system and software engineering. Cambridge: Cambridge
 University Press, 2010, pp. 1-586.

[8] M. Dalvandi, M. Butler and A. Rezazadeh. “From Event-B Models to Dafny Code Contracts,”
 in 6th IPM International Conference on Fundamentals of Software Engineering (FSEN
 2015), 2015, pp. 308-315.

[9] K.R.M. Leino, “Dafny: An automatic program verifier for functional correctness.” in Logic for
 Programming, Artificial Intelligence, and Reasoning. LPAR 2010. Lecture Notes in Computer
 Science, vol. 6355. E.M. Clarke, A. Voronkov, Ed. Berlin, Heidelberg: Springer, 2010, pp.
 348-370.

[10] V. Rivera, N. Catano, T. Wahls and C. Rueda. “Code generation for Event-B.” International
 Journal on Software Tools for Technology Transfer, vol.19, pp.31-52, Feb. 2017.

[11] S. Diswal, P.W.V. Tran-Jørgensen and P.G. Larsen. “Automated Generation of C# and .NET
 Code Contracts from VDM-SL Models,” in THE 14TH OVERTURE WORKSHOP, 2016, pp.
 32-47.

[12] P.W.V. Tran-Jørgensen, P.G. Larsen and G.T. Leavens. “Automated translation of VDM to
 JML-annotated Java.” International Journal on Software Tools for Technology Transfer,
 volume 20, pp. 211–235, Apr. 2018.

[13] Microsoft. “C# reference.” Internet: docs.microsoft.com/en-us/dotnet/csharp/language-
 reference/, Feb. 14, 2017 [Oct. 5, 2020].

[14] Microsoft Research. “Code Contracts.” Internet: research.microsoft.com/en-
 us/projects/contracts/, [Aug. 28, 2020].

[15] M. Barnett, K.R.M. Leino and W. Schulte. “The Spec# Programming System: An Overview,”
 in Construction and Analysis of Safe, Secure, and Interoperable Smart Devices. CASSIS
 2004. Lecture Notes in Computer Science, vol. 3362. G. Barthe, L. Burdy, M. Huisman, JL.
 Lanet JL and T. Muntean, Ed. Berlin, Heidelberg: Springer, 2005, pp. 49-69.

[16] D. Strauss. (2016, Mar. 18). C# Code Contracts Succinctly. [On-line]. Available:
 www.syncfusion.com/ebooks/csharpcontracts [Oct. 5, 2020].

[17] Y. Chisaka and K. Okamoto. “A prototype of a translation tool from VDM++ to C#,” in
 Proceedings of the 78th National Convention of IPSJ. 2016, pp.363-364.

[18] D.R. Cok. “OpenJML: JML for Java 7 by Extending OpenJDK,” in NASA Formal Methods,
 Lecture Notes in Computer Science, vol. 6617, pp. 472–479. M. Bobaru, K. Havelund, G.J.
 Holzmann and R. Joshi, Ed. Berlin Heidelberg: Springer, 2011, pp. 472-479.

[19] N. Battle. “VDMJ.” Internet: github.com/nickbattle/vdmj, [Aug. 28, 2020].

[20] GitHub. “dotnet/Roslyn.” Internet: github.com/dotnet/roslyn, [Aug. 28, 2020].

[21] Kyushu University. “VDMTools User Manual.” Internet:
 github.com/vdmtools/vdmtools/raw/stable/doc/user-man/usermanpp_a4E.pdf, [Oct. 5, 2020]

[22] Galois inc. “SAW – tutorial.” Internet: saw.galois.com/tutorial.html, [Aug. 28, 2020].

Yuma Yamano, Toshihiko Ando & Keishi Okamoto

International Journal of Software Engineering (IJSE), Volume (8) : Issue (3) : 2020 39

[23] K. Claessen and J. Hughes. "QuickCheck: A Lightweight Tool for Random Testing of Haskell
 Programs,” in Proceedings of the fifth ACM SIGPLAN international conference on Functional
 programming, 2000, pp. 268–279.

