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Abstract 

Generalized method of moment estimating function enables one to estimate regression 
parameters consistently and efficiently.  However, it involves one major computational problem:  
in complex data settings, solving generalized method of moments estimating function via Newton-
Raphson technique gives rise often to non-invertible Jacobian matrices.  Thus, parameter 
estimation becomes unreliable and computationally difficult. To overcome this problem, we 
propose to use secant method based on vector divisions instead of the usual Newton-Raphson 
technique to estimate the regression parameters. This new method of estimation demonstrates a 
decrease in the number of non-convergence iterations as compared to the Newton-Raphson 
technique and provides reliable estimates. We compare these two estimation approaches through 
a simulation study. 
 
Keywords: Quadratic Inference Function, Newton-Raphson, Jacobian, Secant Method, Vector 
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1. INTRODUCTION 
GENERALIZED method of moments (GMM) is a popular tool developed by Hansen (1982) to 
estimate regression parameters especially in settings where the number of equations exceeds 
the number of unknown parameters.  Recently, Qu et al. (2000) and Qu and Lindsay (2003 ) have 
formulated a GMM function known as the quadratic inference function (QIF) to analyze the effects 
of explanatory variables on repeated responses.  Since, in general, the correlation structure of 
repeated measures are unknown, Qu et al.(2000) assume a working structure which can be 
decomposed into several basis matrices.  These basis matrices are then combined to form a 
score vector whose dimension is quite large.  The objective is to use this score vector to estimate 
the vector of regression parameters.  The authors proposed to construct a generalized moment 
estimating function based on this score vector and thereafter use calculus to optimize the function 
and obtain estimates of the regression parameters.  The optimized function is non-linear and 
thus, the Newton-Raphson algorithm is implemented to solve iteratively the equation.  However, 
we often remark in simulation studies that the Jacobian matrix of the Newton-Raphson iterative 
equation is close to singularity.  This may lead to unreliable parameter estimates or a blockage of 
the iterative process.  Our objective in this paper is to apply an alternative iterative method that 
omits the computation of the inverse Jacobian matrix.  Yixun (2008) and Mamode Khan (2011) 
considered the secant method of estimation which is based on vector divisions. In this paper, we 
use this approach to estimate the regression parameters based on the GMM objective function 
and compare the Newton-Raphson estimation approach with the Secant method based vector 
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divisions. The comparison between these two techniques is made through simulating AR(1) 
correlated Poisson counts with different covariate designs.   
The organization of the paper is as follows:  In section 2, we provide the estimating equations of  
the Generalized method of moments  and its estimation procedures. In section 3, we introduce 
the method of secant iterative scheme based on vector divisions following Mamode Khan (2011). 
In the next section, we present a simulation study whereby we generate AR(1) correlated Poisson 
counts and use GMM and Secant based on vector divisions to estimate the regression 
parameters. In the last section, we provide the conclusions and recommendations based on  
comparisons of these two techniques. 
 

2. GENERALIZED METHOD OF MOMENTS 
Qu et al. (2000 ) introduced a GMM of the form of a quadratic objective function that combines an 
extended score function with its covariance matrix.  
The construction of the extended score function is based on the generalized estimating equation, 
that is 
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and )(αR  is the working correlation structure.   Their method of GMM models the inverse of 

the correlation structure 
1)( −αR  by a class of matrices  
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where 
m

MMM ,....,, 21  are known basis matrices and 
M

aaa ,...,, 21  are constants.  

Equation (3) can accommodate the popular correlation structures.  Equation (1) can then be 
written as  
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Based on this representation, Qu et al. ( 2000) defined an extended score                       
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 In principle, the vector )(* βg  contains more equations than parameters but they can be 

combined optimally following GMM to form a quadratic objective function of the form 
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The idea is to minimize )(βS .  Qu et al. (2000 ) showed that asymptotically,  
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Then the vector of regression parameters β  is estimated iteratively using the Newton-Raphson 

technique  
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Qu et al. (2000) showed that asymptotically β̂  is consistent and its variance reaches the Cramer-

Rao type lower bound. The algorithm works as follows: After assuming a working structure for the 

basis matrices, we construct )(βS&  and )(βS&&  for an initial of vector regression parameters 0β̂ .  

We replace in equation (10) to obtain an updated 1β̂ . We then use 1β̂  to obtain )ˆ( 1βS&&  and 

)ˆ( 1βS& .  However, this iterative equation may not be successful in estimating parameters for 

every type of setting.  In fact, we carried out an experiment that involves the simulation of 
correlated Poisson counts and noted that while estimating the regression parameters, the 

Jacobian matrix )ˆ(βS&&  often turns out to be singular and ill-conditioned. This ultimately blocks 

the computation process. To remedy the situation, we propose   an alternative approach known 
as the secant method based on vector divisions to estimate the parameters. In the next section, 
we introduce the secant method and show its iterative scheme. 

  

3.  SECANT METHOD 
The traditional secant iterative formula to estimate a scalar parameter β  is given by 
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where   0)( =βF  

However, this iterative formula cannot be applied directly to obtain the vector of regression 

parameters β  in equation (8) since β  is here multi-dimensional. To overcome this issue, Yixun 

Shi (2008) developed an iterative multi-dimensional secant formula using vector divisions. We 

adapt his procedures to solve equation (8).  By letting  )()( ββ SF &= , we estimate iteratively 

using  
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The iterative process works as follows: For initial values of 10
ˆ,ˆ ββ , we calculate 2β̂  using 

equation (13) or (14). Then using 1β̂  and 2β̂ , we calculate 3β̂ . The iterative process continues 

until convergence, i.e,  
5

1 10||ˆˆ|| −
+ <−

tt
ββ .  However, to ensure convergence, we can use a 

steepest direction coefficient  following Mamode Khan (2011) and Yixun (2008).  
 

4 SIMULATION STUDY 
In this section, we generate AR(1) correlated Poisson counts following McKenzie (1986) with true 

mean parameters 1,1 10 == ββ . Note that in GMM, the bases matrices 0M , 1M  and 2M are : 

0M : The identity matrix,  1M  has one on the two main off-diagonals and 2M  has 1 on the 

corners )1,1(  and ).( nn . We consider different covariates designs: 
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and for the second covariate 2it
x , we generate I standard normal values.    

 
 

For each design, we run 5,000 simulations for 100,60,20=I  and 500 . The following tables 

provide the simulated mean of the estimates and the number of non-convergent simulations 

under both techniques.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE 1: Estimates of GMM regression parameters under Newton-Raphson and Secant 

method: Design 1 
 
 

Size 
NR,1β̂  

NR2β̂  sec1β̂  sec2β̂  
Number of 

non-

convergent 

simulations 

in the 

Newton-

Raphson 

Number of 

non-

convergent 

simulations 

in the Secant 

approach 

20 0.9621 0.9872 0.9632 0.9881 2341 1550 
60 0.9991 0.9999 0.9992 1.0054 1201 910 

100 0.9990 1.0024 1.0014 0.9996 825 534 
400 1.0010 0.9998 0.9999 0.9999 230 100 
600 0.9999 0.9999 0.9999 0.9999 98 30 

1000 1.0000 1.0000 1.0000 1.0000 54 10 
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TABLE 2: Estimates of GMM regression parameters under Newton-Raphson and Secant 

method: Design 2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE 3: Estimates of GMM regression parameters under Newton-Raphson and Secant 

method: Design 3 
 
For each design, we assume small initial values of the mean parameters to run the simulations. 
As noted, there is no huge discrepancy between the estimated parameters and the true value of 
the regression parameters. As the cluster size increases, the discrepancies become lesser under 
both estimation techniques in all of the designs. This is in accordance with the consistency 
properties of the estimators under the GMM approach. As regards to the number of non-
convergent simulations, the Newton-Raphson technique reports a comparatively higher number 
of non-convergent simulations than the Secant method as the Jacobian matrix becomes close to 
singularity. This problem was noted in almost all cluster sizes. However, as the cluster size 
increases, the number of non-convergent simulations decreases significantly under both 
approaches. The non-convergence problem also occurs because of the choice of the steepest 
descent coefficient as reported by Mamode Khan (2011). Under some simulations, these 
coefficients were modified to yield convergence and to speed convergence. Based on the 
simulation results, we may conclude that GMM based on the secant method using vector 
divisions is a computationally fast and efficient approach. Also, its computational complexities 
compared with the Newton-Raphson method will be lesser.  In the same context, Mamode Khan 
(2011) showed through simulation studies that the secant method is an efficient estimation 
approach from a computational perspective as it reduces the number of non-convergent 
simulations and provides equally consistent estimates.  

  

Size 
NR,1β̂  

NR2β̂  sec1β̂  sec2β̂  
Number of 

non-

convergent 

simulations 

in the 

Newton-

Raphson 

Number of 

non-

convergent 

simulations 

in the Secant 

approach 

20 0.9943 0.9899 0.9942 0.9892 2562 1899 
60 0.9993 0.9997 0.9992 0.9998 1666 1032 

100 0.9990 1.0003 0.9999 0.9999 1321 998 
400 1.0001 0.9998 0.9999 0.9999 344 223 
600 0.9999 0.9999 0.9999 0.9999 142 97 

1000 1.0000 1.0000 1.0000 1.0000 76 55 

Size 
NR,1β̂  

NR2β̂  sec1β̂  sec2β̂  
Number of 

non-

convergent 

simulations 

in the 

Newton-

Raphson 

Number of 

non-

convergent 

simulations 

in the Secant 

approach 

20 0.9897 0.9899 0.9901 0.9900 1040 999 
60 0.9997 0.9999 0.9998 1.0001 889 762 

100 0.9999 1.0001 1.0000 0.9996 762 566 
400 1.0001 0.9999 0.9999 0.9999 444 320 
600 0.9999 0.9999 0.9999 0.9999 102 87 

1000 1.0000 1.0000 1.0000 1.0000 65 34 
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5 : CONCLUSION 
Generalized method of moments is an efficient estimation approach that yields consistent and 
reliable estimates of regression parameters particularly in an over-determined system of non-
linear equations but its estimation procedures often give rise to singular Jacobian matrices. This 
makes computation quite difficult. In this paper, we propose an alternative to Newton-Raphson 
known as the Secant method based on vector divisions. This approach omits the computation of 
the Jacobian matrix and provides equally consistent and reliable estimates than GMM under 
Newton-Raphson approach. Another advantage of this method is the computational complexities 
are lesser than Newton-Raphson as the inverse of a matrix requires quite a number of flop 
counts. Based on simulation results, we note that both Newton-Raphson and Secant method 
based on vector divisions yield consistent estimates but the secant method yields fewer non-
convergent simulations than Newton-Raphson. However, care must be taken when choosing 
initial values of the parameters. Otherwise, the resulting estimates may be unreliable.  Thus, we 
may conclude that GMM based Secant method is a more optimal estimation methodology. 
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