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Abstract 

The assumption that returns of daily share index prices are normally distributed has long been 
disputed by the data. In this paper, the normality assumption has been tested using time series 
data of daily Nairobi Stock Exchange 20-Share Index (NSE 20-Share Index) for the period 1998-
2011.  It has been confirmed that the share price index returns does not follow the normal 
distribution. Other symmetrical distributions have been fit to the data i.e. logistic distribution and t- 
location scale distribution.   With the aid of a programming language; Matlab we have computed 
the various Maximum Likelihood (ML) estimates from this distributions and tested how well they fit 
to the data. It has been established that the NSE 20 Share Index returns follows a t-location scale 
distribution (normal inverse gamma mixture). We recommend that since we have found that the 
normal inverse gamma mixture best fits the NSE 20 Share Index return, other normal mixtures 
can be investigated how well they fit this data. 

Keywords: Returns, Leptokurtosis, Tail, 20 Share Index, t-location Scale. 

 

1. INTRODUCTION 
A stock market index is a measure of changes in the stocks markets and is usually considered to 
be a reasonably representative of the market as a whole. Indexes are usually tabulated on a daily 
basis and involve summarizing sample share price movements (NSE 20 share index) or all the 
share prices movements (NSE All Share Index, (NASI)). The NSE 20 Share index measures the 
average performance of 20 large cap stocks drawn from different industries. Stock prices and 
returns have been assumed to be normally distributed.   

The first complete development of a theory of random walks in security prices is due to Bachelier 
(1900), whose original work first appeared around the turn of the century. Unfortunately his work 
did not receive much attention from economists. The Bachelier (1900) model assumed that under 
the central-limit theorem the daily, weekly, and monthly price changes will each have normal or 
Gaussian distributions. However it has been found out that most of the distributions of price 
changes are leptokurtic; that is, there are too many values near the mean and too many out in the 
extreme tails. 
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Mandelbrot (1962) asserts that, in the past, academic research has too readily neglected the 
implications of the leptokurtosis usually observed in empirical distributions of price changes. 
Mandelbrot (1963) studied the stable Paretian distribution and showed that it is the distribution of 
price changes provided the characteristic exponent is less than two.  

Fama (1965) discussed first in more detail the theory underlying the random-walk model and then 
tested the model's empirical validity. The past behaviour of a security's price is rich in information 
concerning its future behaviour (Fama, 1965). The theory of random walk shows that the 
successive price changes are independent, identically distributed random variables. Most simply 
this implies that the series of price changes has no memory, that is, the past cannot be used to 
predict the future in any meaningful way. The probability distribution of the price changes during 
time period t is independent of the sequence of price changes during the previous time periods 
i.e, 

   1 1Pr  s|S ,  s ,  . . .   Pr  st t t tS S                (1) 

The actual tests were not performed on the daily prices themselves but on the first differences of 
their natural logarithms. The variable of interest was  

1 1log logt e t e tu S S   ,              (2) 

where
1tS 
is the price of the security at the end of day t+1. 

Fama (1965) demonstrated that first differences of stock prices seem to follow stable Paretian 
distributions with characteristic exponent is less than two. 

According to Officer, (1972), the distribution of stock returns has some characteristics of a non-
normal generating process i.e. the results indicate the distribution is "fat- tailed" relative to a 
normal distribution. However, characteristics were also observed which are inconsistent with a 
stable non-normal generating process. Evidence is presented illustrating a tendency for 
longitudinal sums of daily stock returns to become "thinner-tailed" for larger sums, but not to the 
extent that a normal distribution approximates the distribution. This confirms that the normal 
distribution is not a good fit for the distribution of stock and index prices. 

Praetz (1972) presented both theoretical and empirical evidence about a probability distribution 
which describes the behaviour of share price changes. Osborne's Brownian motion theory of 
share price changes was modified to account for the changing variance of the share market. This 
produced a scaled t-distribution which is an excellent fit to series of share price indices. This 
distribution was the only known simple distribution to fit changes in share prices. It provided a far 
better fit to the data than the stable Paretian, compound process, and normal distributions 
(Praetz, 1972). 

The Student and symmetric-stable distributions, as models for daily rates of return on common 
stocks, have been discussed and empirically evaluated (Blattberg, 1974). Both models were 
derived using the framework of subordinated stochastic processes. Some important theoretical 
and empirical implications of these models were also discussed. The descriptive validity of each 
model, relative to the other, was assessed by applying each model to actual daily rates of return. 
Interpretations of empirical results were guided by results from a Monte Carlo investigation of the 
properties of estimators and model-comparison methods. The major inference of this report was 
that, for daily rates of return, the Student model has greater descriptive validity than the 
symmetric-stable model. 

Hung et al, (2007) studied the variation of Taiwan stock market using the statistical methods 
developed by econophysicists. The Taiwan market was found to have a fat tail as found in the 
markets of other countries, but it did not follow a power law as the others. The cumulative 
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distribution of daily returns in Taiwan stock index could be fitted quite well using the log-normal 

distribution, and even better by a power law with an exponential cut-off. They believed that the 
distinct behaviour of Taiwan market was mainly due to the protective measures taken by the 
government. 

Barndorff, (1977) introduced a family of continuous type distributions such that the logarithm of 
the probability (density) function is a hyperbola (or, in several dimensions, a hyperboloid). The 
focus was on the mass-size distribution of aeolian sand deposits however, this distribution has 
been widely used to model stock returns. Barndorff (1978) discussed the generalised hyperbolic 
distributions which includes the hyperbolic distributions and some distributions which induce 
distributions on hyperbolae or hyperboloids analogous to the von Mises-Fisher distributions on 
spheres.  It is, among other things, shown that distributions of this kind are a mixture of normal 
distributions. Eberlin (1995) based on a data set consisting of the daily prices of the 30 DAX 
share over three years period, investigated the distributional form of compound returns. A class of 
hyperbolic distribution was fit to the empirical returns with high accuracy. Hyperbolic distributions 
fit empirical return adequately, (Kuchler et al. (1999) and Bibby (2003)). 

The logistic distribution is a general stochastic measurement model; it has been used in 
measuring risk incurred in financial assets returns, (Osu, 2010). It has been observed that the 
initial stage of growth of the worth of a business enterprise is approximately exponential. At a time 
the growth slows down. Osu, 2010 asserts that this could be due to diversification (investing in 
more than one stock), since the returns on different stocks do not move exactly in the way all the 
time. Ultimately the growth of the firm is stable and it may not be affected by risk since 
diversification reduces risk.  

Stock returns turn out to be quite sensitive to the degree to which distributions are thick tailed and 
asymmetric. Lack of encoding information about asymmetry and leptokurtosis is a well-known 
drawback of the Normal distribution. This has led to a search for alternative distributions. In this 
work, we test the normality assumption on the NSE 20 Share Price Index. We also fit the logistic 
and the t- location scale distribution to find the best fit to this data. 

2. MODELS OF NSE 20 SHARE INDEX RETURNS 
In this section we present the distributions used in this study. The normal distribution is fully 
discussed in Section 2.1. Section 2.2 presents the logistic distribution whereas the t- location 
scale is presented in Section 2.3. In all this sections, we review the construction, properties and 
estimation of these distributions. It is important to mention that from this point onwards, the 
sample herein referred to consists of the NSE 20 Share Index for the year 1998 to 2011. These 
indices are published daily in the Kenya local newspapers. The series analyzed, is the series of 
returns, where returns are defined as, 

 1100 log logt t tR S S  .          (3) 

 
The behavior of the NSE 20 Share Index considered during this period is shown below in Figure 

1.  The series analyzed for each market is the series of returns, where returns are defined as, 
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given in Equation (3). 
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FIGURE 1: Percentage Returns, Rt of NSE 20 Share Index. 

where 
tR  and 

tS  are the return and the index in day t, respectively. The histogram of this data is 

shown below; 
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FIGURE 2: A Histogram of Returns Rt of NSE 20 Share Index. 

Table 1 below summarizes some relevant information about the empirical distributions of stock 
returns under consideration. The statistics reported are the mean, standard deviation, minimum 
and maximum return during the sample period, coefficients of skewness and kurtosis. 

Mean Variance Minimum 
Value 

Maximum 
Value 

Skewness Kurtosis 

47.9454 10  
0.7881 -5.2339 9.1782 0.5970 13.1608 

 

TABLE 1: Sample Moments of the Distributions NSE 20 Share Index. 
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The third central moment is often called a measure of asymmetry or skewness in the distribution. 
From our descriptive results shown above, the distribution of this data is approximately 
symmetrical though it shows signs of being positively skewed. The coefficient of skewness is 
almost 0.5970. This is well depicted from the histogram in Figure 2 above.  

Kurtosis measures a different type of departure from normality by indicating the extent of the peak 
(or the degree of flatness near its center) in a distribution. We see that this is the ratio of the 
fourth central moment divided by the square of the variance. If the distribution is normal, then this 
ratio is equal to 3. A ratio greater than 3 indicates more values in the neighborhood of the mean 
(is more peaked than the normal distribution). Our data has a fat tail or excess kurtosis as shown 
in the coefficient of kurtosis (i.e. kurtosis of 13.1608). The distribution of this data is leptokurtic. 

2.1 Normality Assumption Test 

A random variable is said to be normal distributed with mean,    and variance, 
2 (Mood, 2001) 

if its probability distribution is 

 
 

2

22

1
( ) exp , , 0.
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t t
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f r for r


 



 
        
 
 

  (4) 

The maximum likelihood estimates of the normal distribution with their corresponding standard 
errors are shown below in Table 2 below; 

 

Parameter  Estimate Std error 

  0.000794536 0.0151517 

  0.887763 0.0107162 

 
TABLE 2: ML Estimates of the Normal Distribution. 

 
The distribution of financial returns over horizons shorter than a month is not well described by a 
normal distribution. In particular, the empirical return distributions, while unimodal and 
approximately symmetric, are typically found to exhibit considerable leptokurtosis.  The typical 
shape of the return distribution, as compared to a fitted normal is presented in Figure 3 below. 
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FIGURE 3: A normal Fit to the Returns Rt Data. 

The coefficients of standardized skewness and kurtosis provide strong evidence about departures 
from normality, but more formal conclusions can be reached through the tests of normality 
reported below in Table 3.  

 Ansari Bradley Kolmogorov-Smirnov Jarque-Bera 

Market Statistic P-value Statistic P-value Statistic P-value 

NSE 20 
Share 
Index 

6516176 

 

052     8.6874 10  
0.1181 42     4.0112 10  

4. 101 4972  
0031.0 10  

 

TABLE 2: Goodness of Fit Tests for the Normal Distribution. 

All these tests are done at the 5% significance level. The results in Table 3 above does not come 
as no surprise; virtually all studies that use daily data also reject the normality of stock returns. 
This is due to its failure to capture the fat tail of the returns data. Another reason why this model 

failed is due to the assumption that the variance 
2 of price changes over unit time interval is a 

constant. This is clearly depicted when we plot a probability plot to compare the distribution of our 
data and the normal distribution as shown in Figure 4. 
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FIGURE 4: A Probability Plot of the Normal Fit. 

The goodness of fit coupled with the probability plot give a clear evidence against the normal 
distribution as a fit of the Returns of NSE 20 Share Price Index. In order to test what specification 
describes the data better than the Normal distribution, we consider in the next part two alternative 
distributions that allow for the characteristics of the data discussed above; we then fit such 
distributions to the data in the following part.   

2.2 Fitting a Logistic Distribution 
The density function of the logistic distribution is given by  

 

 

 
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  

       (5)                   

where µ (-∞ < µ < ∞) is a location parameter and    (  >0) is a dispersion (or scale) parameter. 

(Walck, 2007). This distribution, which is very similar to the normal in that it is symmetric but has 
thicker tails, and it has been first suggested as appropriate to model stock return. The maximum 
likelihood estimates of this distribution are obtained using the Expectation Maximization (EM) 
algorithm.   

Parameter Estimate Std error 

  -0.00461803 0.0121681 

  0.423535 0.00620854 

 

TABLE 4: ML Estimates for the Logistic Distribution. 
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The estimates in Table 4 above are used to fit the logistic distribution to the returns NSE 20 
Share Index data. The shape of the return distribution, as compared to a fitted logistic distribution 
is presented in Figure 4 below. 
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FIGURE 5: A logistic Distribution Fit to the Returns Rt Data. 

Tests of goodness of fit results at 5% level of significance are presented in Table 5 below; 

 Ansari Bradley Kolmogorov-Smirnov 

Market Statistic P-value Statistic P-value 

NSE 20 Share 
Index 

6155059 0102.2026 10  0.0460 0.0013 

 

TABLE 5: Goodness of Fit Tests for the Logistic Distribution. 

The probability plot of the distribution of our data and the logistic distribution is represented in 
Figure 6 below;  
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FIGURE 6: A Probability Plot of the Logistic Distribution Fit. 

It is also clear that at any level of significance the logistic distribution fails to fit the returns of NSE 
20 Share Price Index. The logistic distribution has a fatter tail than normal distribution.  It failed to 

fit the returns of NSE 20 Share Index returns due to the assumption that the variance 
2 of price 

changes over unit time interval is a constant.   

2.3 Fitting a t-Location Scale Distribution 
The t-location-scale distribution is useful for modeling data distributions with heavier tails (more 
prone to outliers) than the normal distribution. It is a normal inverse gamma mixture.  

Let us assume that the returns of share price or an index Rt has a distribution whose variance, 
2

i   over unit time interval, is not a constant which is the case. Really, in practice this is so, 

because any share market often has long periods of relative activity, followed by long periods of 
relative inactivity. The information which affects prices does not come uniformly, but rather in 
bursts of activity. 

 Let Rt be normally distributed with the variance 
2

i   of returns of share price changing, i.e. it’s a 

random variable with distribution function ( )ig  . A t-location scale is a mean variance mixture 

with a reciprocal gamma distribution as a mixing distribution. It is one of the standard non-normal 
distributions used in financial economics. Let Rt be distributed as follows  
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  (6) 

with an inverse gamma distribution as the mixing distribution. Consider a special inverse gamma 

with shape parameter 
2

 and scale parameter 
2

  as shown below: 
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which simplifies to, 
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This is a t- location scale distribution as shown by (Barndorff, 1988). If a random variable Rt has a 

t- location with parameters ,  and   then the random variable tr 




 has a student t- 

distribution with   degrees of freedom. The mean, variance and kurtosis for this distribution are 

 ,

2

2



 
and 

3( 2)

4








respectively (Wenbo, 2006). 

 
Using the Expectation Maximization algorithms of the t- location scale distribution, we obtain the 
maximum likelihood estimates of the t- location scale distribution. 

Parameter Estimate Std. Error 

  -0.00889354 0.0102819 

  0.480765 0.0115711 

  2.42046 0.124132 

 

TABLE 6: ML Estimates for the t-location Scale Distribution. 

Using these estimates we fit the t-location scale distribution to the NSE 20 Share Index data. The 
shape of the return distribution, as compared to a fitted t-location scale distribution is presented in 
Figure 7 below. 
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FIGURE 7: A t- location Scale Distribution fit to the Returns Rt Data. 

Tests of goodness of fit results at 5% level of significance are presented in Table 7 below; 

 Ansari Bradley Kolmogorov-Smirnov 

Market Statistic P-value Statistic P-value 

NSE 20 Share 
Index 

5922916 0.4883 0.0192 0.5460 

 

TABLE 7: Goodness of Fit Tests for the t-location Scale Distribution. 

 
The probability plot of the return distribution and the t-location scale distribution is given Figure (8) 
below; 
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FIGURE 8: A Probability Plot of the t-location Scale Distribution Fit. 

We have found strong support for the t-location scale distribution, which cannot be rejected at any 
reasonable significance level.  This is because the t- location scale captures the fat tail exhibited 
in the NSE 20 Share Index returns. This also provides a clear evidence of the fact that the 
variance of price changes over unit time interval is a not constant. This is the case in practice 
because any share market often has long periods of relative activity, followed by long periods of 
relative inactivity. The information which affects prices does not come uniformly, but rather in 

bursts of activity. This is a formal evidence of the fact 
2  varies significantly from year to year, as 

the degree of activity in the market also varies. Having established that the t-location scale (rather 
than the Normal) distribution properly describes daily NSE 20 Share Index, we conclude any 
predictions on the returns of NSE 20 Share Index should be based on the t-location scale 
distribution and not the normal distribution. Studies in financial economics can be based on the t- 
location scale distribution.  

3. CONCLUSION 
This study was interested in fitting an empirical distribution to the NSE 20 share index. In finding 
returns we used changes in logarithms prices instead of simple price changes. This is because; 
 
i) The change in log price is the yield, with continuous compounding, from holding the security for 
that day.  
 
ii) It has been shown that the variability of simple price changes for a given stock is an increasing 
function of the price level of the stock. Taking logarithms seems to neutralize most of this price 
level effect. 
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iii) For changes less than 15 percent, the change in log price is very close to the percentage price 
change, and for many purposes it is convenient to look at the data in terms of percentage price 
changes.   

After thorough descriptive analysis it was clear that the NSE 20 share price index data is 
approximately symmetrical though it shows signs of being positively skewed. The coefficient of 
skewness is almost 0.5970. The data also exhibited a fat tail or excess kurtosis hence leptokurtic 
(i.e. kurtosis of 13.1608). 

In an attempt to fit a normal distribution to the NSE 20 share price index data all tests done at the 
5% significance level led to rejection of this distribution. This is due to the fact that the normal 
distribution fails to capture the fat tail of the returns data. Another reason why this model failed is 

due to the assumption that the variance 
2 of price changes over unit time interval is a constant.  

Though the logistic distribution has a fatter tail than normal distribution, it was also rejected at 5% 
level of significance.  It failed to fit the returns of NSE 20 Share Index returns due to the 

assumption that the variance 
2 of price changes over unit time interval is a constant.  

The t-location scale distribution has a fatter tail than the normal and logistic distributions. In the 
construction of this distribution, the scale parameter (i.e. the variance) is not assumed constant. 
From our results, we found strong support for the t-location scale distribution, which could not be 
rejected at any reasonable significance level.  This is because it captures the fat tail exhibited in 
the NSE 20 Share Index returns. This also provides a clear evidence of the fact that the variance 

of price changes over unit time interval is not a constant. This is a formal evidence of the fact 
2  

varies significantly from year to year, as the degree of activity in the market also varies. From 
these results, we conclude that any predictions on the returns of NSE 20 Share Index should be 
based on the t-location scale distribution and not the normal distribution. Studies in financial 
economics could be based on the t- location scale distribution. We further recommend that since 
we have found that the normal inverse gamma mixture best fits the NSE 20 Share Index return, 
other normal mixtures can be investigated how well they fit this data. 
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