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Abstract 
 

The Kaplan Meier method is used to analyze data based on the survival time. In this paper used 
Kaplan Meier procedure and Cox regression with these objectives. The objectives are finding the 
percentage of survival at any time of interest, comparing the survival time of two studied groups 
and examining the effect of continuous covariates with the relationship between an event and 
possible explanatory variables. The variables (Age, Gender, Weight, Drinking, Smoking, District, 
Employer, Blood Group) are used to study the survival patients with cancer stomach. The data in 
this study taken from Hiwa/Hospital in Sualamaniyah governorate during the period of (48) 
months starting from (1/1/2010) to (31/12/2013) .After Appling the Cox model and achieve the 
hypothesis we estimated the parameters of the model by using (Partial Likelihood) method and 
then test the variables by using (Wald test) the result show that the variables age and weight are 
influential at the survival of time.  

 

Keywords: Survival Time, The Kaplan Meier Method, Cox Regression Method. 

 
 

1. INTRODUCTION 
 This program performs Cox (proportional hazards) regression analysis, which models the 
relationship between a set of one or more covariates and the hazard rate. Covariates may be 
discrete or continuous. Cox’s proportional hazards regression model is solved using the method 
of marginal likelihood outlined [8]. 
 
This routine can be used to study the impact of various factors on survival. You may be interested 
in the impact of diet, age, amount of exercise, and amount of sleep on the survival time after an 
individual has been diagnosed with a certain disease such as cancer. Under normal conditions, 
the obvious statistical tool to study the relationship between a response variable (survival time) 
and several explanatory variables would be multiple regression. Unfortunately, because of the 
special nature of survival data, multiple regressions is not appropriate. Survival data usually 
contain censored data and the distribution of survival times is often highly skewed. These two 
problems invalidate the use of multiple regressions. Many alternative regression methods have 
been suggested. The most popular method is the proportional hazard regression method.[4]  

 

2. METHODOLOGIES 
SPSS was used in this analysis. Kaplan Meier and Cox regression are the two main analyses in 
this paper. The Kaplan Meier procedure is used to analyze on censored and uncensored data for 
the survival time. It is also used to compare two treatment groups on their survival times. The 
Kaplan Meier technique is the univariate version of survival analysis. To present more details in 
the survival analysis, further analysis using Cox regression as multivariate analysis is presented. 
Cox regression allows the researcher to include predictor variables (covariates) into the models. 
Cox regression will handle the censored cases correctly. It will provide estimated coefficients for 
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each of the covariates that allow us to assess the impact of multiple covariates in the same 
model. We can also use Cox regression to examine the effect of continuous covariates. The 
steps required in SPSS to perform the above objectives are listed as follows. 

 

3. THE COX REGRESSION MODEL [3][4] 
Survival analysis refers to the analysis of elapsed time. The response variable is the time 
between a time origin and an end point. The end point is either the occurrence of the event of 
interest, referred to as a death or failure, or the end of the subject’s participation in the study. 
These elapsed times have two properties that invalidate standard statistical techniques, such as 
t-tests, analysis of variance, and multiple regressions. First of all, the time values are often 
positively skewed. Standard statistical techniques require that the data be normally distributed. 
Although this skewness could be corrected with a transformation, it is easier to adopt a more 
realistic data distribution.  
 
The second problem with survival data is that part of the data are censored. An observation is 
censored when the end point has not been reached when the subject is removed from study. This 
may be because the study ended before the subject’s response occurred, or because the subject 
withdrew from active participation. This may be because the subject died for another reason, 
because the subject moved, or because the subject quit following the study protocol. All that is 
known is that the response of interest did not occur while the subject was being studied.  
 
When analyzing survival data, two functions are of fundamental interest—the survivor function 
and the hazard function. Let T be the survival time. That is, T is the elapsed time from the 
beginning point, such as diagnosis of cancer, and death due to that disease. The values of T can 
be thought of as having a probability distribution. 
 

Suppose the probability density function of the random variable T is given by )(Tf . The 

probability distribution function of T is then given by 

 



T
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The survivor function, )(TS , is the probability that an individual survives past T. This leads to 

 

)(1)Pr()( tFtTTS               (2) 

 
The hazard function is the probability that a subject experiences the event of interest (death, 
relapse, etc.) during a small time interval given that the individual has survived up to the 
beginning of that interval. The mathematical expression for the hazard function is 
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The cumulative hazard function  )(TH  is the sum of the individual hazard rates from time zero to 

time T. The formula for the cumulative hazard function is 
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Thus, the hazard function is the derivative, or slope, of the cumulative hazard function. The 
cumulative hazard function is related to the cumulative survival function by the expression 
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Or 

))(ln()( TSTH                     (5) 

 
We see that the distribution function, the hazard function, and the survival function are 
mathematically related. As a matter of convenience and practicality, the hazard function is used in 
the basic regression model. 
 
Cox (1972) expressed the relationship between the hazard rate and a set of covariates using the 
model 
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Where pxxx ,...,, 21  are covariates, p ,...,, 21  are regression coefficients to be estimated, T 

is the elapsed time, and )(Tho  is the baseline hazard rate when all covariates are equal to zero. 

Thus the linear form of the regression model is 
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Taking the exponential of both sides of the above equation, we see that this is the ratio between 
the actual hazard rate and the baseline hazard rate, sometimes called the relative risk. This can 
be rearranged to give the model 
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     (7) 

 
The regression coefficients can thus be interpreted as the relative risk when the value of the 
covariate is increased by one unit.  
 
Note that unlike most regression models, this model does not include an intercept term. This is 

because if an intercept term were included, it would become part of  )(Tho .  

 
Also note that the above model does not include T on the right-hand side. That is, the relative risk 
is constant for all time values. This is why the method is called proportional hazards.  
 
An interesting attribute of this model is that you only need to use the ranks of the failure times to 
estimate the regression coefficients. The actual failure times are not used except to generate the 
ranks. Thus, you will achieve the same regression coefficient estimates regardless of whether 
you enter the time values in days, months, or years. 
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3.1 Cumulative Hazard [1][6] 
 

Under the proportional hazards regression model, the cumulative hazard is 
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Note that the survival time T is present in )(THo  , but not in 
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. Hence, the cumulative 

hazard up to time T is represented in this model by a baseline cumulative hazard )(THo which is 

adjusted by the covariates by multiplying by the factor 
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3.2 Cumulative Survival [1][6] 
 

Under the proportional hazards regression model, the cumulative survival is 
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Note that the survival time T is present in )(TSo  , but not in 
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3.3 Maximum Likelihood Estimation [1][6]  

Let Mt ,..,1 index the M unique failure times MTTT ,...,, 21 . Note that M does not include 

duplicate times or censored observations. The set of all failures (deaths) that occur at time tT  is 

referred to as tD . Let index the members of . The set of all individuals that are at risk 

immediately before time tT  is referred to as tR . This set, often called the risk set, includes all 

individuals that fail at time as well as those that are censored or fail at a time later than tT  . Let 

tnr ,...,1  index the members of tR  . Let X refer to a set of  p covariates. These covariates are 

indexed by the subscripts i, j, or k. The values of the covariates at a particular failure time dT  are 

written pddd xxx ,...,2,1  or idx  in general. The regression coefficients to be estimated are 

p ,...,, 21  

 
3.4 The Log Likelihood  
When there are no ties among the failure times, the log likelihood is given as follows [8]:  
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Where    
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The following notation for the first-order and second-order partial derivatives will be useful in the 
derivations in this section. 
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The maximum likelihood solution is found by the Newton-Raphson method. This method requires 
the first and second order partial derivatives. The first order partial derivatives are 
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The second order partial derivatives, which are the information matrix, are 
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When there are failure time ties (note that censor ties are not a problem), the exact likelihood is 
very cumbersome [2][7]. Breslow’s approximation was used by the first Cox regression programs, 
but Efron’s approximation provides results that are usually closer to the results given by the exact 
algorithm and it is now the preferred approximation [6]. We have included Breslow’s method 
because of its popularity. 
 

3.5 Breslow’s Approximation To The Log Likelihood  
The log likelihood of Breslow’s approximation is given as follows:- [8] 
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Where 
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The maximum likelihood solution is found by the Newton-Raphson method. This method requires 
the first-order and second-order partial derivatives. The first order partial derivatives are 
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The negative of the second-order partial derivatives, which form the information matrix, are 
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3.6 Efron’s Approximation to the Log Likelihood  
The log likelihood of Efron’s approximation is given as follows [8]:- 
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The maximum likelihood solution is found by the Newton-Raphson method. This method requires 
the first and second order partial derivatives. The first partial derivatives are 
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The second partial derivatives provide the information matrix which estimates the covariance 
matrix of the estimated regression coefficients. The negative of the second partial derivatives are 
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4. ESTIMATION OF THE SURVIVAL FFUNCTION  
Once the maximum likelihood estimates have been obtained, it may be of interest to estimate the 
survival probability of a new or existing individual with specific covariate settings at a particular 
point in time [8][12].  
 

4.1 Cumulative Survival  
This estimates the cumulative survival of an individual with a set of covariates all equal to zero. 
The survival for an individual with covariate values of is X0 
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T.0h23e estimate of the baseline survival function is calculated from the cumulated hazard 

function using )(TSo
. 
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The value of αt, the conditional baseline survival probability at time T, is the solution to the 
conditional likelihood equation  
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When there are no ties at a particular time point Dt, contains one individual and the above 
equation can be solved directly, resulting in the solution  
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When there are ties, the equation must be solved iteratively. The starting value of this iterative 
process is 
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4.2 baseline hazard Rate [6][12][13] 

 Estimate the baseline hazard rate as follows )( to Th   

 

tto Th 1)(                          (24) 

 

They mention that this estimator will typically be too unstable to be of much use. To overcome 
this, you might smooth these quantities using lowess function of the Scatter Plot program.  
 
4.3 Cumulative Hazard [6][12][13] 

An estimate of the cumulative hazard function )(THo derived from relationship between the 

cumulative hazard and the cumulative survival. The estimated baseline survival is  
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This leads to the estimated cumulative hazard function is  
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4.4 Cumulative Survival [6][12][13] 
The estimate of the cumulative survival of an individual with a set of covariates values of  X0 is  
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5. STATISTICAL TEST AND CONFIDENCE INTERVAL [6][12][13]  
Inferences about one or more regression coefficients are all of interest. These inference 
procedures can be treated by considering hypothesis tests and/or confidence intervals. The 
inference procedures in Cox regression rely on large sample sizes for accuracy.  Two tests are 
available for testing the significance of one or more independent variables in a regression: the 
likelihood ratio test and the Wald test. Simulation studies usually show that the likelihood ratio test 
performs better than the Wald test. However, the Wald test is still used to test the significance of 
individual regression coefficients because of its ease of calculation. These two testing procedures 
will be described next.  

 

6. LIKLIHOOD RATION AND DEVIANCE [3][4][6] 
The Likelihood Ratio test statistic is -2 times the difference between the log likelihoods of two 
models, one of which is a subset of the other. The distribution of the LR statistic is closely 
approximated by the chi-square distribution for large sample sizes. The degrees of freedom (DF) 
of the approximating chi-square distribution is equal to the difference in the number of regression 
coefficients in the two models. The test is named as a ratio rather than a difference since the 
difference between two log likelihoods is equal to the log of the ratio of the two likelihoods. That 
is, if Lfull  is the log likelihood of the full model and Lsubset  is the log likelihood of a subset of the 
full model, the likelihood ratio is defined as  

)][ln(2]L-[2 full

full

subset
subset

l

l
LLR                    (27) 

Note that the -2 adjusts LR so the chi-square distribution can be used to approximate its 
distribution.  The likelihood ratio test is the test of choice in Cox regression. Various simulation 
studies have shown that it is more accurate than the Wald test in situations with small to 
moderate sample sizes. In large samples, it performs about the same. Unfortunately, the 
likelihood ratio test requires more calculations than the Wald test, since it requires the fitting of 
two maximum-likelihood models. 

 
7. Deviance [3][4][6] 
When the full model in the likelihood ratio test statistic is the saturated model, LR is referred to as 
the deviance. A saturated model is one which includes all possible terms (including interactions) 
so that the predicted values from the model equal the original data. The formula for the deviance 
is 

]L-[2 SaturatedReducedLD                              (28) 
 

The deviance in Cox regression is analogous to the residual sum of squares in multiple 
regression. In fact, when the deviance is calculated in multiple regression, it is equal to the sum of 
the squared residuals.  
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The change in deviance, ΔD, due to excluding (or including) one or more variables is used in Cox 
regression just as the partial F test is used in multiple regression. Many texts use the letter G to 
represent ΔD. Instead of using the F distribution, the distribution of the change in deviance is 
approximated by the chi-square distribution. Note that since the log likelihood for the saturated 
model is common to both deviance values , ΔD can be calculated without actually fitting the 
saturated model. This fact becomes very important during subset selection. The formula for  ΔD 
for testing the significance of the regression coefficient(s) associated with the independent 
variable X1 is  
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Note that this formula looks identical to the likelihood ratio statistic. Because of the similarity 
between the change in deviance test and the likelihood ratio test, their names are often used 
interchangeably.  
 
7.1 Wald test [3][4][6] 
The Wald test will be familiar to those who use multiple regression. In multiple regression, the 
common t-test for testing the significance of a particular regression coefficient is a Wald test. In 
Cox regression, the Wald test is calculated in the same manner. The formula for the Wald statistic 
is 
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Where  
jbS  is an estimate of the standard error of jb  provided by the square root of the 

corresponding diagonal element of the covariance matrix, 
1)ˆ(  IVar  . 

 

With large sample sizes jz , the distribution is closely approximated by the normal distribution. 

With small and moderate sample sizes, the normal approximation is described as ‘adequate.  
 
7.2 Confidence Intervals [3][4][6] 
Confidence intervals for the regression coefficients are based on the Wald statistics. The formula 
for the limits of a two-sided confidence interval is 100 (1−α)% 
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7.3 Coefficient of determination R2 [6] 
The time of the writing of their book, there is no single, easy to interpret measure in Cox 
regression that is analogous to R

2
 in multiple regression. They indicate that if such a measure 

“must be calculated” they would use 
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Where L0  is the log likelihood of the model with no covariates, n is the number of observations 
(censored or not), and Lp  is the log likelihood of the model that includes the covariates.  
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8. DESCRIPTION DATA 
In this paper, depending on real data for the cancer stomach diseases , the researcher choosing 
this type of cancer because it is diffusion and in the current time in Sulaimaniyah governorate / 
Iraq Kurdistan region . To collect the data for the cancer stomach diseases, returning the atomic 
medicine and radiance in the hiwa hospital in Sulaimaniyah. The time of the collecting data for 
this study between (1/1/2010-31/12/2013). 

 

9. RESEARACH VARIABLES 
The most important variables that have been studied in this paper 
 
T: Survival Time [ is the survival time of patients ( cancer stomach ) until death or    
    Surveillance] 
D : Represent variable case [ 1 :Death     0: Censored ] 
X1: Represents the gender of the patient [  1: Male  2:Female ] 
X2: Repersents the patient’s age at injury 
X3: Represents the patient’s weight at injury 
X4: Represents the Smoking Variable [ 1: Smoking   2:Non-Smoking ] 
X5 : Represents the Blood group Variable 
X6 : Represents the district Variable [ 1: Within the governorate   2: Outside governorate] 
X7 : Represents the Drinking Variable [ 1: Drinking   2:Non-Drinking ] 

 
10. USING THE KAPLAN MEIER PROCEDURE 
Table 1, Table 2, and Figure 1 are presented as below, the analysis based on the first objective. 
Table 1 shows the number of events, namely the number of cases is 5, with the percentage of 
censored cases being 97.6%. Table 2 shows the mean of survival time is 242 months, with the 
standard error 26.756. Figure 1 shows the survival plots. It is shown in the diagram that at 300 
months, 82% of the observations were still alive. The Figure 1, show more information on the 
percentage of the survival for different months can be accessed by referring to the specific month 
and looking for the associate survival rate. 
 

 
 
 
 
 

 
 

TABLE 1: Case Processing Summary. 

 
TABEL 2: Means for Survival Time. 

 

Total N N of Events 
Censored 

N Percent 

210 5 205 97.6% 

 

         Mean 

Estimate 
Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

242.046 26.756 189.605 294.487 

a. Estimation is limited to the largest survival time if it is censored. 
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FIGURE 1: Survival Function. 

 
 

Table 3, Table 4, Table 5 and Figure 2 are presented as below, the analysis of the second 
objective. Table 3 shows the number of cases for the two categories in Age, with cases of 1-40 
years (164 observations) and cases 41-80 year (46 observations). Thus, there are 164 
observations which have cancer stomach in the range (1-40) years and 46 observations which 
have cancer stomach in the range (41-80) year. Table 4 shows the mean survival times for the 
two groups, with the mean for cases of (1-40) years is  79.966 months and the mean for cases  
(41-80) years is 193.230 months. Table 5 shows the results of log-rank test with the p-value of 
0.043, which indicates that there is a significant difference between the two groups having a 
shorter time to event. The survival plot (Figure 2) shows that the group (41-80) years has a longer 
survival time to event compared to the group     (1-40) years. This situation is shown in Figure 2, 
where 62% of patients with range (1-40) year was still alive at 48 months as compared with 84% 
of patients with range    (41-80) years. From Figure 2, more information about the survival rate for 
different months for the two groups can be retrieved by referring to the specific month and looking 
for the associated survival rates. 
 
 

 

Age Total N N of Events 
Censored 

N Percent 

   1-40 164 2 162 98.8% 

  41-80 46 3 43 93.5% 

 Overall 210 5  205 97.6% 
 

TABLE 3: Case Processing Summary. 
 

 

Age 
Mean 

Estimate 
Std. Error 

95% Confidence Interval 

Lower Bound Upper Bound 

      1-40 79.966 5.227 69.721 90.212 

    41-80 193.230 65.180 65.476 320.983 
 

 

TABLE 4: Means for Survival Time. 
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 Chi-Square df Sig. 

Log Rank (Mantel-Cox) 4.101 1 .043 
 

TABLE 5: Overall Comparisons. 

 

 

 
 

FIGURE 2: Survival Plot for Comparison of the Two Groups. 

 

The results from the Cox regression are presented in Table 6, Table 7, Table 8, and Table 9. 
Table 6 shows that only 98.6% of the observations or cases are available in the analysis and 
there is no number of cases dropped.  

 

Details N Percent 

Cases available in analysis 

Event 5 2.4% 

Censored 202 96.2% 

Total 207 98.6% 

Cases dropped 

Cases with missing values 0 0.0% 

Cases with negative time 0 0.0% 

Censored cases before the 

earliest event in a stratum 
3 1.4% 

Total 3 1.4% 

Total  210 

 
TABLE 6: Case Processing Summary. 
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variables 
Frequenc

y 

(1) (2) (3) (4) (5) (6) 

Gender 
1=Male 127 1      

2=Female 83 0      

Age 

1=10-20 7 1 0 0 0   

2=21-30 55 0 1 0 0   

3=31-40 102 0 0 1 0   

4=41-50 45 0 0 0 1   

7=71-80 1 0 0 0 0   

Weight 

1=31-50 39 1 0 0    

2=51-70 155 0 1 0    

3=71-90 13 0 0 1    

4=91-110 3 0 0 0    

Employer 

1=Worker 70 1 0 0 0 0  

2=Housewi

fe 

83 0 1 0 0 0  

3=Officer 20 0 0 1 0 0  

4=Student 14 0 0 0 1 0  

5=Child 1 0 0 0 0 1  

6=Retard 22 0 0 0 0 0  

Smoking 
1=Yes 88 1      

2=No 122 0      

Blood _Group 

1=A+ 45 1 0 0 0 0 0 

2=A- 4 0 1 0 0 0 0 

3=B+ 15 0 0 1 0 0 0 

4=B- 2 0 0 0 1 0 0 

5=AB+ 55 0 0 0 0 1 0 

7=O+ 82 0 0 0 0 0 1 

8=O- 7 0 0 0 0 0 0 

District 
1=Inside 118 1      

2=Outside 92 0      

Drinking 
1=Yes 12 1      

2=No 198 0      

 
TABLE 7: Categorical Variable Coding a,c,d,e,f,g,h,i. 

 

Table 8 shows the model is significant using chi-square test, the value of the test is equal to 
17.587 and the p-value of the test is equal to  (p-value=0.025) which is  less than (0.05). Table 9 
provides the p-values and the hazard ratio (Exp(B)) of the variables.SE values in Table 9 are 
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small, and the problem of multicolinearity is under controlled. For the confounder model, the most 
important variables to be looked into the group factors, which are the Age and Weight. The result 
shown that the p-value of age and weight are equal to 0.038 and 0.009 respectively, which are 
significant as reported in the Kaplan Meier analysis. The associate hazard ratio (HR) as indicated 
in Exp(B) is 0.05, which is less than ' 1'. For reporting HR, there are three possibilities: (a) a value 
of' 1' means there is no differences between two groups in having a shorter time to event, (b) a 
value of 'more than 1' means that the group of interest is likely to have a shorter time to event as 
compared to the reference group, and (c) a value of 'less than 1' means that the groups of 
interest less likely to have a shorter time to event comparing to the reference group. Therefore, 
the group of interest for Age (which is '1' –1-40 years) is less likely to have a shorter time to event 
(death) as compared to the reference group. Table 9 also shows that the Age and weight are 
significant, whereas other variables have insignificant. 
 

 

-2 Log 

Likelihood 

Overall (score) 
Change From Previous 

Step 
Change From Previous Block 

Chi-square df Sig. Chi-square df Sig. Chi-square df Sig. 

23.568 17.587 8 .025 17.529 8 .025 17.529 8 .025 

a. Beginning Block Number 1. Method = Enter 
 

TABLE 8: Omnibus Tests of Model Coefficients. 

 
 

Variables B SE Wald df Sig. Exp(B) 
95.0% CI for Exp(B) 

Lower Upper 

Age 3.395 1.640 4.287 1 .038 29.807 1.199 741.245 

Weight 2.553 .973 6.881 1 .009 12.850 1.907 86.592 

Drinking -.339 2.875 .014 1 .906 .712 .003 199.557 

Gender 2.337 1.660 1.982 1 .159 10.353 .400 268.062 

Employer .061 .560 .012 1 .913 1.063 .355 3.189 

District -1.317 1.359 .939 1 .332 .268 .019 3.844 

Smoking .721 1.546 .217 1 .641 2.055 .099 42.532 

Blood Group -.043 .307 .019 1 .890 .958 .525 1.751 
 

TABLE 9: Variables in the Equation. 

11. CONCLUSION AND RECOMANDATION 

11.1 Conclusion 

i) In  the analysis part , the result show that the variables age and weight are two variables that 
effected to the survival time and choose these variables to stay in the model and other 
variables (drinks, sex, Employer, District, Smoking, Blood Group) has no significance effect to 
the survival time. 
 

ii) In the analysis part, the biggest risk to be effect on survival time during (24-48) months, 
where the hazard rate is equal to (0.002314815) as shown in the table 10. 
 

iii) The possibility of the survival times of patients decrease in the first period to the second 
period and fixed the survival times until reach the (288) months. 
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Interval 
Start Time 

Number 
Entering 
Interval 

Number 
Withdrawing 

during 
Interval 

Number 
Exposed 
to Risk 

Proportion 
Terminating 

Cumulative 
Proportion 

Surviving at 
End of Interval 

Hazard Rate 
Std. Error 
of Hazard 

Rate 

0-24 210 138 141 0.0212766 0.978723404 0.000896057 0.000517 

24-48 69 64 37 0.05405405 0.925819436 0.002314815 0.001636 

48-72 3 1 2.5 0 0.925819436 0 0 

72-96 2 1 1.5 0 0.925819436 0 0 

96-120 1 0 1 0 0.925819436 0 0 

120-144 1 0 1 0 0.925819436 0 0 

144-168 1 0 1 0 0.925819436 0 0 

168-192 1 0 1 0 0.925819436 0 0 

192-216 1 0 1 0 0.925819436 0 0 

216-240 1 0 1 0 0.925819436 0 0 

240-264 1 0 1 0 0.925819436 0 0 

264-288 1 0 1 0 0.925819436 0 0 

288-312 1 1 0.5 0 0.925819436 0 0 

 

TABLE 10: Life Table. 

 
11.2 Recommendations 
i) Use cox model to conduct and more studies about the other types of cancers and knowing 

the factors that affecting at each type of these disease. 
 

ii) The data is the primary factor in any study so we recommend the development of statistical 
cadres specialized in the field of organization and data arrangement in hospitals and health 
centers to register correctly. 
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