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Abstract 
 
In this paper, three-parameter Weibull extensions: generalized gamma (GG), exponentiated 
Weibull (EW), and Odd Weibull (OW) distributions, which are capable of modeling data that 
exhibit five major hazard shapes, are compared using Vuong, empirical distribution function, and 
Shapiro-Wilk W- tests. The goal of this work is to compare the GG, EW, and OW distribution 
using better model selection criteria under general conditions as addressed by the Voung test, in 
addition to the tests considered. Our simulation study and graphical analysis show that the OW 
distribution is different from both GG and EW distributions even though all three distributions have 
five common hazard shapes. An example using voltage data is also considered to illustrate 
applications of the three distributions. Our comparative results led us to develop a six-parameter 
generalized distribution which is an extension of the GG, EW, and OW distributions. A four-
parameter sub-model of this distribution, the exponentiated Odd Weibull distribution which has 
applications in modeling lifetime data, was studied in our recent publication. 
 
Keywords: Exponentiated Odd Weibull Distribution, Simulation Study, Vuong Test, Empirical 
Distribution Function, Shapiro-Wilk W-test. 

 
 
1. INTRODUCTION 

In a recent article [1], we developed a six-parameter generalized Weibull distribution which is an 
extension of the generalized gamma (GG)[2], exponentiated Weibull (EW)[3], and Odd Weibull 
(OW)[4] distributions. We also studied one of its submodel, the exponentiated Odd Weibull 
distribution. In this study, we present results which motivated us to develop the six-parameter 
generalized Weibull distribution in [1]. Specifically, we compare the GG, EW, and OW 
distributions in order to investigate whether it is reasonable to develop an extension of the three 
distributions. 
 
As mentioned in [1], the GG and EW distributions are well-known distributions in the literature, 
while the OW distribution has not yet been studied extensively. The OW distribution was 
developed by [4] considering the distributions of the odds of the Weibull and inverse Weibull 
distributions. The interest in considering the GG, EW, and OW distributions is that all three 
distributions are an extension of the Weibull distribution with an extra parameter. All three 
distributions have five common hazard shapes: constant, increasing, decreasing, bathtub, and 
arc-shape. In addition, the OW is very flexible in modeling lifetime data in that its hazard function 
exhibits 8 different shapes: constant, decreasing, increasing, arc-shape, bathtub, S-shape, 
inverse-S shape[5], and unimodal. Properties of the OW distribution are discussed in [4, 5, 6, 7]. 
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In literature, the GG and EW distributions were compared by [8] based on both the Kullback-
Leibler distances and quantile functions. The GG and EW were also compared by [9] using the 
quartile ratio relationship log(Q2/Q1)/log(Q3/Q2). [10] compared the hazard flexibility of the GG, 
EW, and OW distributions based on a criterion developed from the total time on test transform 
plot. Furthermore, the GG  and  OW  distributions  were  compared  by  [7]  using  both  likelihood  
ratio  test  and  Cramér-von Mises-type distances. In this paper, we compare GG, EW, and OW 
distributions based on Vuong[11], empirical distribution function (EDF) tests [12], and Shapiro-
Wilk W-test[13]. Specifically, we consider three EDF test statistics:  Kolmogorov Smirnov (KS), 
Cram´er-von Mises (CM), and Anderson Darling (AD) tests. This criterion uses a simulation study 
to analyze the performance of different density and hazard shapes of the GG, EW, and OW 
distributions. The main purpose of this work is to compare the GG, EW, and OW distribution 
using better model selection criteria under general conditions, whether the competing models are 
nested, overlapping, or non-nested, and whether the models are correctly specified, as 
addressed by [11]. This criterion has the desirable property that it coincides with the usual 
classical testing approach when the models are nested [11]. In addition, we use the KS test since 
it measures good fit in the middle of the distribution. On the other hand, the AD test measures 
good fit  in the tail area, while CM test measures the overall fit. Observe that the criteria used in 
this paper is different from the ones used by [7, 8, 10] since there is no need to repeat the same 
work. 
 
In addition, the GG, OW, and EW distributions are compared graphically using the Shapiro-Wilk 
W-test statistic. An example on voltage data is used to illustrate applications of the GG, EW, and 
OW distributions. 

 
2. BACKGROUND AND METHODS 
The goal of this work is to first compare the performance of the GG, EW, and OW distributions 
using a deductive research method. This is achieved through a simulation study based on data 
generated from the three distributions. Secondly, the three distributions are compared graphically 
using the Shapiro-Wilk W-test. This is comparative research since this study is performed by 
comparing data from the three distributions considered. The cumulative distribution functions of 
the GG, EW, and OW distributions are, respectively, 
 

FGG(x; λ, θ, k) = Γ{ (x/θ)λ , k}
 
; λ > 0, θ > 0, k > 0, 

 

FEW(x; λ, θ, γ)  = [1 – exp{−(x/θ)λ}]γ ; λ > 0, θ > 0, γ > 0, 

 

FOW(x; λ, β, θ) = 1 – (1 + [exp{(x/ θ) λ} - 1]β)-1 ; λβ>0, θ>0, 

 
where x > 0; Γ(t; k) is the incomplete gamma function defined by 

, and  is the complete gamma function defined 

by . 

 
2.1 Comparison using Vuong and Empirical Distribution Tests 
2.1.1 General Approach 
Pairwise comparisons of the GG, EW, and OW distributions are performed by using Vuong[11], 
KS, CM, and AD tests[12]. We compare the three distributions when the data are generated from 
the GG, EW, and OW distributions, respectively. We simulate data from the GG, EW, and OW 
distributions with sample sizes n = {100, 200, 400, 800} to produce different density and hazard 
shapes such that f (x) = {unimodal (U), bimodal (BI)}, and h(x) = {decreasing (D), increasing (I), 
arc-shape (A), bathtub (B), S-shape (S), inverse-S shape (IS) , unimodal low-peak (Ulp), unimodal 
high-peak (Uhp) .  For each pairwise comparison, the test statistics for Vuong, KS, CM, and AD 
tests are computed at a significance level of α = 0.05, based on 1000 replications. 
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2.1.2 Hypothesis Test 
Denote the distributions GG, EW, and OW by Fj, j = 1, 2, 3, respectively; and their corresponding 
pdfs by fj, j = 1, 2, 3, respectively. Given the two distributions Fj and Fk for a fixed j ≠ k with j, k = 
1, 2, 3, we  consider  the  hypotheses, H0 : Distributions Fj and Fk are equivalent against Hfj : 
Distribution Fj is better than distribution Fk, or Hfk : Distribution Fk is better than distribution Fj. 
Observe that distributions are equivalent means the distributions are equally closer to the data 
generating distribution. Note that when the data are coming from the distribution Fj, we record the 
proportion of times when both distributions Fj and Fk are equivalent (Pe), and the proportion of 
times when Fj is better than Fk. The proportion of  times  when  Fk  is  better  than  Fj  can  be  
calculated  as  1 − Pe − PFj .   In  Table 1, PG is the proportion of times when GG is better, PE is 
the proportion of times when EW is better, and PO is the proportion of times when OW is better. 
An example of the omitted proportion is when the data are coming from GG compared with EW; 
the proportion of times when EW is better than GG is 1 − Pe − PG. Results are summarized in 
Table 1.  Observe that we did not consider any variation of the scale parameter θ when we 
simulate data from all three distributions. Since it does not affect the shape of the density or 
hazard functions. Specifically, in this simulation study, 9 parameters of the 3 distributions are 
simultaneously estimated to compute the test statistics defined in this section. 
 
2.1.3 Description of Vuong Test 
Pairwise comparisons of the GG, EW, and OW distributions are performed by using a test 
statistic proposed by [11] for non-nested distributions. The likelihood ratio statistic for testing 
distribution Fj against distribution Fk is 
 

 

Since the GG, EW, and OW distributions are non-nested, the statistic L* is not chi-squared 
distributed. 
 
Vuong used the Kullback-Liebler information criteria to develop the following test statistic T* to 
discriminate between two non-nested distributions. To test the null hypothesis H0, [11] proposed 

the statistic   where  is the estimate of the variance of   such that: 

 

.  

 
We use Vuong test because it is less computationally intensive for parametric distributions than 
computing Kullback-Liebler distances between densities. For non-nested distributions, T* is 
approximately standard normally distributed under the null hypothesis that the two distributions 
are equivalent. At significance level α, we compare T* with zα/2. If T* < -zα/2, the null hypothesis is 

rejected in favor of  , the distribution that Fk is better than Fj.  If T* > zα/2, the null hypothesis is 

rejected in favor of  , the distribution that Fj is better than Fk.  However, if |T*| ≤ zα/2, the null 

hypothesis is not rejected, hence, there is no evidence to say that both distributions are not 
equivalent. 
 
2.1.4 Description of EDF Tests 
Pairwise comparisons of the GG, EW, and OW distributions are also performed using the EDF 
test statistics:  KS, CM, and AD tests[12].  As outlined in [12],  the test statistics for each test are 
defined        as follows. The formulas involve the cdf values arranged in ascending order, F (x1) < 
F (x2) · · · < F (xn).  
 

The KS test statistic is D = max(D+, D-), where , and 

. The CM test statistic is 
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. The AD test statistic is 

. 

We use the KS test statistics because it places more emphasis on good fit in the middle of the 
distribution. On the other hand, the AD test statistic places more emphasis on good fit in the tails 
than in the middle of the distribution, while the CM test focuses on the overall fit of the 
distribution. 
 
2.2 Graphical Comparison using The Shapiro-Wilk W-test 
The performance of the GG, EW, and OW distributions was compared graphically using the 

Shapiro- Wilk W-test [13] for assessing normality of the distributions. The Shapiro-Wilk W-test 

statistic is given by 

, 

 
where x(1), x(2), …, x(3) are sample order statistics, and the weights ai,n were obtained from [14]. 
 
For each distribution, sample data were generated from the uniform distribution, U(0,1) using 
sample sizes n = 25, 30, 40, and 50, and then plugged into its quantile function. Values of the W-
test statistic were computed by considering different values of shape parameters for the 
distribution. Results for the surfaces and corresponding contour plots are shown in Figures 1 − 3. 

 
3. RESULTS AND DISCUSSION 
In Table 1, when the data are coming from the GG compared with the EW distribution, both 
Vuong and KS tests show that GG and EW are more equivalent as compared to the results from 
AD test. This result further justifies that the GG and EW are more similar in the middle of the 
distributions than in the tail area. Similar results are observed when the data are coming from the 
EW distribution. Based  on our simulation results, when the data are coming from the OW and the 
hazard function is S-shape, the OW is not significantly different from either GG or EW distribution 
as the sample size n becomes larger.  The reason is that the S- shape of the OW  is not very 
prominent.  However,  when the data   are coming from the OW distribution and the hazard 
function is increasing, bathtub, inverse-S shape, unimodal low-peak, or unimodal high-peak, the 
OW is significantly different from the GG and EW as n becomes larger based on all the four tests. 
Clearly, in this case the OW density function is either bimodal or unimodal with a thick upper tail. 
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TABLE 1: Vuong, KS, CM, and AD tests for GG, EW, and OW distributions  
based on 1000 simulations. 
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FIGURE 1: W-test statistic plots for GG using sample sizes 25, 30, 40, and 50. 
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FIGURE 2: W-test statistic plots for EW using sample sizes 25, 30, 40, and 50. 
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 FIGURE 3: W-test statistic plots for OW using sample sizes 25, 30, 40, and 50. 
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The proportion of times the distributions are equivalent goes to zero as n becomes larger 
whenever OW is compared with either GG or EW distributions. Clearly, these proportions go to 
zero faster when OW is compared with GG than the EW distribution. Examples are the bathtub 
and inverse-S hazard shapes, which highlight the difference in performance between the GG and 
EW distributions. These results show that the GG and EW distributions provide a poor fit for the 
simulated data if data are coming from the OW distribution. In the cases considered, the GG 
performs poor than the EW distribution even though the two distributions have the same hazard 
taxonomy. Differences in performance of the GG and EW are also observed on the arc-shape 
hazard function when the data are coming from EW and compared with the GG distribution based 
on KS, CM, and AD tests. 
 
These results show differences between the performance of the GG and EW distributions since 
our analysis is based on better model selection criteria under general conditions through the tests 
considered. The Voung test used in this analysis is an improvement of the Kullback Leibler 
distances used by [8] since it is a better model selection criteria under general conditions and is 
based on both Kullback Leibler distances and likelihood ratio test statistic. By general conditions, 
this refers to whether the competing models are nested, overlapping, or non-nested, and whether 
the models are correctly specified. Vuong test is less computationally intensive for parametric 
distributions than computing Kullback-Liebler distances between densities. Moreover, it also 
served as a better selection criteria since it is probabilistic and is based on testing if the 
competing models are as close to the true distribution against the hypothesis that one model is 
closer than the other [11]. The KS, AD, and CM tests provide additional support for the 
differences in the performance of the GG, EW, and OW distributions by highlighting differences in 
fit in the middle of the distribution, the tail area, and the overall fit, respectively, between the 
pairwise distribution comparisons considered. Thus, our analysis is an improvement to work 
previously done in literature. 
 
Furthermore, from Figures 1 - 3, we observe different patterns of departure from normality for the 
three distributions based on the Shapiro-Wilk W-test statistic. As illustrated by the surface plots 
and contour plots, the maximum value of the Shapiro-Wilk W-test statistic achieved by  each 
distribution is different from the maximum values achieved by the other two distributions. The GG 
achieves the smallest maximum value while the OW achieves the largest maximum value of the 
test statistic. This shows that the OW results in samples which are further away from normality 
than the GG and EW. As the sample size increases, the maximum value achieved by the test 
statistic decreases for each distribution. Although this value remains significantly different from 
the maximum values achieved by the other two distributions. The surface plots also illustrate the 
differences in the steepness of the graphs, with the GG resulting in a more steeper graph than 
the EW and OW distributions. Based on our analysis, we conclude that the OW distribution is 
significantly different from GG and EW distributions. 

 
4. APPLICATIONS: VOLTAGE DATA EXAMPLE 
For application purposes, the GG, EW, and OW distributions are fitted to the voltage data studied 
by [15], which gives failure times and running times for a sample of devices from a field-tracking 
study of a larger system. The dataset consists of 30 units which were initially installed in normal 
service conditions. The two causes of failure observed for each unit that failed were accumulation 
of randomly occurring damage from power-line voltage spikes during electric storms, and failure 
caused by normal product wear [15]. We analyze this dataset to investigate whether there is any 
significant difference in the fit of the models estimated by using the GG, EW, and OW 
distributions. Observe that we did not fit the models presented in [15] since we only considered 
three-parameter models in this study. 
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 GG EW OW 

MLE (SE) λ̂ = 0.8037(0.2941) λ̂ = 7.1062(0.2387) λ̂ = 7.7817(0.2235) 
 k̂ = 1.6967(0.8168) γ̂ = 0.1294(0.0246) β̂ = 0.1108(0.0242) 

 θ̂ = 81.217(72.0155) θ̂ = 322.02(23.167) θ̂ = 205.68(7.5596) 
 

NLL 
 

188.91 
 

177.05 
 

168.45 
AIC 377.82 360.10 342.90 

BIC 382.02 364.30 347.10 

KS 0.2210 0.2189 0.1313 

CM 0.3423 0.2548 0.0710 

TABLE 2: Estimates of fitted distributions for voltage data. 

 
Parameters of the three distributions were estimated using the maximum likelihood estimation 
method. Our analysis is based on the Akaike information criteria (AIC), Bayesian information 
criteria (BIC), Kolmogorov Smirnov (KS) test statistic, and Cramer-von Mises (CM) type distances 
defined by the sum of the squared KS distances for each complete data. Results from the 
analysis are given in Table 2. The standard errors (SE) are given in parenthesis. From  Table 2, 
the OW distribution gives  the lowest AIC, BIC, KS, and CM values. Thus, it is the best 
distribution for fitting the voltage data, among the three distributions considered. It is followed by 
the EW distribution, which has the second smallest values for the AIC, BIC, KS, and CM test 
statistics. Observe that the parameter θ has a high standard error for the GG and EW 
distributions. 
 

 
 

FIGURE 4: Fitted survival curves of the GG(blue), EW(red), and OW(green) distributions along with Kaplan-
Meier(K-M) curve for voltage data. 
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FIGURE 5: Fitted pdfs of the GG(blue), EW(red), and OW(green) distributions for voltage data. 

 
Figure 4 shows the fitted survival curves of the GG, EW, and OW distributions, along with the 
Kaplan-Meier curve illustrating the effects of voltage in the survival of the devices. It is clear from 
Figure 4 that the OW distribution provides a better fit compared to the GG and EW distributions.  
Thus, the OW survival function provides a good parametric estimate for the Kaplan-Meier curve 
for modeling the voltage data.  Figure 5 shows the pdfs of the GG, EW, and OW  distributions 
fitted to  the histogram of the voltage data. As shown in Figure 5, the OW distribution provides a 
better fit for the data since its pdf is able to fit the bath-tub shape of the histogram.  In addition,  
Figure 6 shows   the quantile-quantile plots for the GG, EW, and OW distributions, each plotted 

against the ordered observations.  The pth quantile  was estimated from the pth quantile of 
the fitted distribution and p = (r - 0.5)/n,  r  = 1, . . . , n.  The q-q plot shows that the OW  
distributions provides a better fit for  the data, compared to the GG and EW distributions. Results 
from this graphical analysis agree with  the results obtained in Table 2. Therefore, we conclude 
that the performance of the GG, EW, and OW distributions in fitting the voltage data is 
significantly different. 

 

 
 

FIGURE 6: Q-Q plots of voltage data. 
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5. GENERALIZATION OF THE THREE WEIBULL EXTENSIONS 
Motivated by the results in Section 3 and 4, we developed the following six-parameter 
generalized distribution function introduced by [1] which is an extension of the GG, EW, and OW 
distributions. 
 

     (1) 

 

where x > 0;  θ  > 0, γ  > 0, δ  > 0, k  > 0, λβ  > 0, , 

and  is the complete gamma function defined by . Submodels of (1) 

which have been studied in literature include the GG distribution (when δ = β = γ = 1), EW 
distribution (when δ = β = k = 1), and OW distribution (when γ = δ = k = 1). A four-parameter 
submodel of (1), the exponentiated Odd Webull distribution (EOW) with δ = k = 1 was then 
developed and studied in [1]. The EOW distribution has applications in modeling lifetime data, as 
illustrated in [1]. 

 

6. CONCLUSIONS 
Our results showed that the performance of the OW differs significantly from either GG or EW 
distribution based on the tests considered. In addition, the OW distribution provides a better 
three-parameter alternative to the GG and EW distributions because of its hazard flexibility. Our 
analysis was an improvement to work previously done in literature since we used more general 
criteria for comparing the three distributions. From this study, we conclude that extensions of the 
GG, EW, and OW distributions may be developed to improve flexibility in the distribution and thus 
improve the fitting of data as done in [1]. This is necessary since recent technological 
advancements have resulted in more complex datasets which require more flexible distributions 
to provide a good fit to the data. As future work, additional extensions or generalizations of the 
GG, EW, and OW distributions will be considered using existing transformation methods in 
literature. Properties for other new submodels of the six-parameter generalized Weibull 
distribution in equation (1) will also be studied. 
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