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Abstract 
 
The Fourier Transform (FT) is the single best-known technique for viewing and reconstructing 
signals. It has many uses in all realms of signal processing, communications, image processing, 
radar, optics, etc. The premise of the FT is to decompose a signal into its frequency components, 
where a coefficient is determined to represent the amplitude of each frequency component. It is 
rarely ever emphasized, however, that this coefficient is a constant. The implication of that fact is 
that Fourier Analysis (FA) is limited in its accuracy at representing signals that are time-varying, 
e.g. non-stationary. Another novel technique called empirical mode decomposition (EMD) was 
introduced in the late 1990s to overcome the limits of FA, but the EMD was shown to have 
stability issues in reconstructing non-stationary signals in the presence of noise or sampling 
errors. More recently, a technique called variational mode decomposition (VMD) was introduced 
that overcomes the limitations of both aforementioned methods.  This is a powerful technique that 
can reconstruct non-stationary signals blindly. It is only limited in the choice of the number of 
modes, K, in the decomposition. In this paper, we discuss how K may be determined a priori, 
using several examples. We also present a new approach that applies VMD to the problem of 
blind source separation (BSS) of two signals, estimating the strong powered signal, termed the 
interferer, first and then extracting the weaker one, termed the signal-of-interest (SOI). The 
baseline approach is to use all the predetermined K modes to reconstruct the interferer and then 
subtract its estimate from the received signal to estimate the SOI. We then devise an approach to 
choose a subset of the K modes to better estimate the interferer, termed culling, based on a very 
rough a priori frequency estimate of the weak SOI. We show that the VMD method with culling 
results in improvement in the mean-square error (MSE) of the estimates over the baseline 
approach by nearly an order of magnitude. 
 
Keywords: Blind Source Separation (BSS), Culling, Non-stationary, Variational Mode 
Decomposition (VMD). 

 
 
1. INTRODUCTION 

The problem of blind source separation (BSS) using a single receiver is a challenging one. The 
problem is compounded by real world artifacts of signals that are non-stationary, pass through 
non-linear and/or non-stationary channels, and perhaps are distorted by passing through non-
linear amplifiers. The non-stationarity is by far a bigger limiting factor than non-linearity [1]. Two 
novel techniques have been developed to perform signal extraction in non-stationary conditions, 
far surpassing the performance of conventional methods including Fourier analysis, wavelet 
processing, principal components analysis (PCA), and singular value decomposition (SVD). The 
first method, called empirical mode decomposition (EMD), constructs a signal using a series of 
intrinsic mode decompositions, by isolating frequency components from high to low. This is 
performed by an averaging process of the envelopes created by local minima and maxima of the 
signals [2]. The second method, called variational mode decomposition (VMD) is a novel 
technique that overcomes some of the limitations associated with EMD, such as noise and  
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sampling rate sensitivities [1]. VMD operates by constructing a signal from a set of modes, where 
each mode is formed using a Wiener filter constructed around a particular center frequency. Both 
the modes and frequencies are estimated. The modes themselves are selected to be narrowband 
about the center frequency. 
 
In [1], the authors demonstrated superior performance of VMD in reconstructing a signal in the 
presence of noise. However, there has been limited application to studying the algorithm’s usage 
to separate two signals, whereby both a signal-of-interest (SOI) and the interferer are to be 
estimated. This is the classical problem of BSS. In [3], VMD was applied to separation of a 
sinusoidal signal from speech, using PCA also, but the application was limited to this single use 
case. In addition, the issue of selection of the number of modes, K, is yet to be addressed. 
 
In this paper, we describe applying VMD using several unknown, non-stationary SOI and 
interferer combinations, where we assume without loss of generality that the interferer is stronger 
than the SOI. Through this, we observe a natural selection of K based on an estimate of the 
number of narrowband components of signals. We generalize this to selecting K based on the 
type of interferer present. We then use the selected value of K to estimate the higher powered 
interferer, and then subtract this estimate from the received signal to extract the weaker powered 
signal-of-interest (SOI); this is our baseline VMD BSS algorithm. Next, we propose a modification 
to this VMD baseline approach, wherein certain modes of the decomposition are removed in 
estimating the interferer, based on an assumption of the SOI’s amplitude or frequency, so as to 
not include spurious modes that belong to the SOI. This is shown to provide an improvement in 
MSE of the interferer and hence also of the SOI.  Significant improvement over the baseline 
algorithm is seen over a range of carrier-to-interference ratios (CIRs), which is the power ratio 
between the SOI and interferer, as well as signal-to-noise-ratios (SNRs). 
 
An outline of the paper is as follows: Section 2 first discusses the VMD algorithm, introduced in 
[1]. Section 3 presents the signal model and problem. Section 4 shows a performance analysis 
with several signal types, including tones, chirps, speech, and a digitally modulated quaternary 
phase shift keyed (QPSK) signal to demonstrate how the number of modes may be selected. 
Section 5 describes the two proposed algorithms: the baseline VMD BSS algorithm and the 
improved culling method and presents their performance with some examples. Finally, concluding 
remarks are given in Section 6. 

 
2. BACKGROUND:  VARIATIONAL MODE DECOMPOSITION (VMD) 

As discussed in [3] and originally presented in [1], a signal x(t) may be viewed as the sum of a set 
of modes, constructed from the VMD using a series of transformations. First, we use a Hilbert 
Transform (HT) to compute an analytic (complex) version of the real mode, denoted uk, to be 

estimated; its associated center frequency will be denoted k. Next, the mode is translated via an 

exponential shift to baseband, using k as the shifting frequency. Third, the center frequency and 
bandwidth of the mode are estimated, by assuming the baseband signal takes on a narrow band 
about the zero frequency. The bandwidth is estimated by computing the magnitude squared, 
often referred to as the L

2
 norm, of the gradient of this translated signal.  Hence, the problem 

formulation is based on minimizing this bandwidth. The steps are repeated to compute 
subsequent modes, until K, the predetermined number of modes, has been reached. The sum of 
all the modes approximates the original signal, x(t), resulting in a constrained problem written as: 
 

    (1) 
 

where k = 1, 2, …, K. The term in parenthesis is applied to compute the Hilbert Transform of uk(t), 

* denotes convolution, the exponential term provides the translation of component k to 
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baseband, and the partial derivative t is the gradient of the result. Finally, the norm of the entire 
term is computed using ||

.
||

2
. This problem is solved by augmenting with additional constraints: 

The first constraint is a parameter, , used to adjust the weight of the first term in the Eq. (1) 

depending on the noise. The more the noise, the smaller the . The second constraint is a 

Lagrange  multiplier, , used to adhere strictly to the constraint dictated by the second term in Eq. 
(1). These two constraints result in the updated problem formulation. 
 

         (2) 
 

After some mathematical manipulation (details provided in [1]), the solution is obtained by 

initializing: n = 0, k = 1, u1
0
 = 

0
 = 1

0
 = 0, and computing the modes and frequencies as: 

 

       (3) 
 
and 

 

          (4) 
 
where 
 

   (5) 
 

and  is a time step constant. We iterate from k = 1, 2, …, K and also from n = 0, 1, …, N-1 until 
the modes and frequencies converge; for our simulations, we let N = 500. Note that one limit with 
the VMD algorithm is in selection of the number of modes, similar to selection of the number of 
signals when using PCA. If underselected, the interferer is not fully captured but if overestimated, 
then partial SOI cancellation occurs. In both cases, errors in estimating the interferer and SOI 
occur. In the next section, we discuss how K can be selected based on the expected types of 
signal. 
 

3. SIGNAL MODEL 
Let us assume we collect a signal that takes the form: 
 

     (6) 
 
where x(t) is a SOI, I(t) is an interfering signal, and n(t) is noise, modeled as additive white 
Gaussian noise (AWGN). The goal is to blindly separate and estimate both the non-stationary 
SOI and non-stationary interferer in the presence of the noise, hence this is a BSS problem. The 
amplitude of the interferer is set to unity, without loss of generality. The amplitude of the SOI, Ax, 
is set to achieve a certain SOI to interferer ratio, denoted as a carrier-to-interference (CIR), in dB, 
computed by: 

         (7) 
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Furthermore, the noise standard deviation, n, is set to achieve a desired carrier-to-noise ratio 
(C/N), also in dB, given by: 
 

             (8) 
 
Without loss of generality, we assume: (1) that the amplitude of I(t) is unity, so that we vary the 
amplitude of the SOI alone; and (2) Ax < 1, meaning the interferer is stronger than the SOI; if Ax > 
1 we would treat the SOI as the interferer. An important consequence of the second assumption 
is that the VMD will estimate the interfering signal first; we limit our attention therefore to the case 
where -10 < CIR < 0 dB, resulting in 0.1 < Ax < 1. We also limit our attention to 0 < C/N < 15 dB.   
 
For our first proposed, baseline, approach, we input y(t) to the VMD algorithm, and the output 

modes are used to compute the estimate of I(t), denoted (t) as: 
 

           (9) 
 
We again emphasize that this equation is based on the assumption that the interferer power is 
higher, hence it will be estimated first by VMD. We then estimate the SOI as: 
 

     (10) 
 
Finally, performance is determined by computing the mean-square error (MSE) between the true 
signals and their estimates, using: 
 

         (11) 
 
and 
 

          (12) 
 

For the purpose of analysis, we assume four types of SOI and interferer types. These are as 
follows: 

 Tone:  x(t)/I(t) = , where ft is the tone frequency; 

 Chirp: x(t)/I(t) = , where fd is the initial frequency of the chirp, and  is the 
rate of change in the frequency in Hz/sec; 

 QPSK: x(t)/I(t) = A(t) + jB(t), where A, B take on values of {-1, +1} and are randomly 
generated;  

 Speech: x(t)/I(t) = , where 
 

   (13) 
 
and where ai(t) is the amplitude of component i, which will be time-varying, i.e. non-stationary, fci 

is its center frequency, fi(t) is the frequency modulation, i = 1, 2, …, Ns, and Ns is the number of 
signals combined to form the speech signal [4]. 
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For simulation purposes, we let 1 < ft < 5 kHz, fd = 40 kHz,  = 10 kHz/s, and 1 < fc < 1; 000 Hz, 
and Ns = 6. 
 
In the next section, we study the performance of VMD as a BSS algorithm, using Eqs. (11) and 
(12) as the performance metrics, with combinations of the above four signal types representing 
the interferer and SOI pair. After that, we discuss how to cull some modes in Eq. (9) to improve 
the MSEs of both signals. 

 
4. PREDICTION OF THE NUMBER OF MODES FOR BLIND SOURCE 

SEPARATION (BSS) 
Fig. 1 shows several examples of interferer and SOI pairs, where the number of modes K is 
plotted vs. the MSE between the tru/e interferer (or SOI) and its estimate, using CN = 15 dB and 
CIR = -10 dB. The first two cases show one and three tone interferers, respectively, with a 
speech SOI. The optimum number of modes K when the interferer is a tone is equal to the 
number of tones. If its underestimated, then a tone may not be cancelled, resulting in errors to 
both tone and SOI estimates.  Overestimation also results in slight increase in errors; this is 
expected because now a portion of the SOI is being cancelled, but the increase is small because 
the speech signal contains many spectral components. 
 
The third plot shows a QPSK interferer. Here, the number of modes is roughly equal to the 
number of lobes in the QPSK signal spectrum. A larger hit to the MSE of the SOI is seen if the 
number of modes is underestimated, because this does not result in adequate cancellation of an 
in-band lobe. If the QPSK signal is wideband, a few modes are still needed to capture the wider 
main lobe. Hence, a good value of K is about 6 to 10. In the fourth plot, a speech signal is the 
interferer. This is the most unstructured of all the interferers, with several narrowband spectral 
components, and hence the most modes are required.  Still, the number of modes needed to 
estimate the signal can be assumed to be fairly small, i.e. K < 10. 
 
When the interferer is a chirp, as in the fifth, sixth, and seventh plots, the number of modes 
required depends on the chirp bandwidth, with more modes for wider chirps. However, even in 
this case, only about K = 6 to 10 modes is needed. Note that if the number of modes is estimated 
to be too high, then slight errors occur in the estimation of both the interferer and speech signals. 
If it’s too low, larger errors can occur for estimation of the SOI, as the interferer is not being 
adequately cancelled. Furthermore, for the wideband chirp case, underestimating the modes 
results in significant errors for both signals, so overestimation is better. 
 
In the final plot where the interferer is a speech signal and the SOI is a chirp, we still require K = 6 
to 10. This is the most stressing of all the cases with significant spectral overlap of the signals, so 
we see a degradation in the MSE performance.  However, the algorithm can still separate the 
signals and does not require any increase in K. Hence, we see that VMD in general operates with 
small values of K, smaller for tones/narrowband chirps, larger for wideband chirps/QPSK, and 
largest for speech. A summary of the number of modes for the signal pairs is in Table I.   
 
The next section describes our second proposed approach to reduce the MSE by frequency- or 
amplitude-based mode culling. 

 
5. IMPROVED ALGORITHM USING FREQUENCY-BASED MODE CULLING 
Revisiting Eqs. (6) and (9), we explore ways to improve the MSEs of interferer and SOI. The 
selected method involves an initial estimate of the frequency bands at which a strong SOI 

component may exist. Then, the modes uk associated with those frequencies, k, are removed 
from Eq. (9) to obtain an improved estimate of the interferer. We write the summation as before, 

but subtract every mode j, where j is estimated to be a frequency of X(), and where X() = 
FFT{x(t)}, i.e.  
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FIGURE 1:  Number of Modes, K, vs. Mean-Square Error (MSE); C/N = 15 dB, CIR = -10 dB. 
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TABLE 1: Interferer, SOI, and Number of Modes. 

 

     (14) 

 
Since certain modes have been removed in estimating the higher powered interferer, we term this 

new approach as VMD with mode culling. Note that the j’s have to be estimated or guessed at, 

since we do not know X(). This could be done by knowing what bands a particular SOI lies in or 
knowing the type of signal under search, since most signals occupy specific frequency bands 
designated by the International Telecommunications Union (ITU) internationally; in the United 
States the Federal Communications Commission (FCC) determines frequency bands for specific 
services. The SOI is still obtained from the new interferer estimate using Eq. (10), and MSEs are 
computed as before from Eqs. (11) and (12). 
 
Another way to do the mode culling is to try to estimate the amplitude of a SOI, which of course is 
easiest to estimate with a narrowband or tone SOI, and then remove the uk(t)’s whose amplitude 

is closest, i.e. the k
th
 component where Ax  max(uk(t)). We can write: 

 

      (15) 
 

From the analysis conducted, the selection should be based on which parameter is easier to 
estimate, i.e. more stationary over time. Removal of estimated SOI modes by culling has the 
objective of better estimating the interferer, which in turn results in an improved estimate of the 
SOI. 
 
Fig. 2 illustrates the culling concept for a speech interferer overpowering a narrow tone SOI. We 

take a guess as to the frequency of the SOI, choosing the k that most closely reflects that 
frequency. We then remove the associated mode, u2 in this case, from the interferer estimation. 
We compute the MSE of the resulting signals. The figure illustrates the MSEs of both SOI and 
interferer, before and after culling. We also show the ratio of MSEs to determine how much 
improvement the culling provides. An improvement of one to two orders of magnitude in both the 
interferer and SOI are seen. This is explained by noting that the tone has a power that is higher 
than some modes of the interferer, hence it will be included in the mode decomposition of the 
interferer. By using its estimated frequency or amplitude to remove (cull) it, we can improve the 
estimates of both signals. The improvement is seen across the whole range of C/N and CIR, 
where the interferer MSE is substantially reduced because estimation error due to the presence 
of the SOI is removed. Also, note that when the SOI is culled, the MSE performance of the 
interferer is more constant across the range of CIR, which is expected because the SOI is 
removed in obtaining the interferer estimate, so its power is not important. The resultant culling 
also improves the SOI MSE for all C/N’s and CIR’s. 
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The next example is a more stressing case where there is a speech interferer riding on a chirp 
SOI. There is overlap between the two in the spectral domain, and the amplitude of the SOI is 
high enough so as to cause errors in estimating the interferer, and hence the SOI itself. 
Estimating that the chirp is present over the first three frequencies, and culling these, we obtain 
the result in Fig. 3. Both sets of plots again show the results over a range of C/N and CIR for 
completeness. For the baseline algorithm, when CIR is very small, the MSE of the interferer is 
low. This is because the interferer is much stronger than the SOI, so it can be easily estimated; 
hence, the MSE of the SOI is smallest in this range, too. MSE of both interferer and SOI degrade 
gracefully as C/N reduces. With culling, we see a similar improvement in the interferer’s MSE as 
in the previous example; it is improved across the whole range of C/N and CIR, and is overall 
reduced. Culling also significantly reduces the MSE of the SOI overall, except at very low CIR. At 
low CIR, i.e. CIR = -10 dB, the culling approach does not work as well, since the modes estimate 
the interferer, not the SOI, so culling introduces cancellation errors. The most significant 
improvement in SOI MSE is seen at higher CIR. However, performance improvement at low CIR 
is difficult. Hence, future effort can be directed at joint algorithms to improve performance at 
higher CIR.  If we look at the ratio of culled MSE to the baseline MSE, which is also plotted in 
Figs. 2 and 3, both for the interferer and SOI, we see that up to one or two orders magnitude 
improvement is with the culling approach. This occurs with both tone and chirp SOIs. 
 
These results demonstrate that the culling approach offers improvement when compared to the 
conventional VMD approach presented in [1]; EMD and other conventional methods such as 
Fourier analysis, wavelet analysis, and PCA fail to perform here due to the presence of the 
interfering signal. Thus, the VMD culling approach offers promise in blindly separating non-
stationary signals, surpassing the best currently available approach of the conventional VMD. 

 
6. CONCLUSION 
This paper describes the application of the variational mode decomposition (VMD) algorithm to 
the problem of blind source separation (BSS). A higher powered interferer is estimated using 
VMD first, and then subtracted from the received mixture to extract a lower powered signal-of-
interest (SOI). Typically, as we show with numerous examples and signal types, the number of 
VMD modes can be less than K = 10. If the interferer can be effectively broken down into N 
tones, then we should choose K = N for optimum performance. For wideband interferers, we 
typically choose K = 6 to 10. We further describe an improvement to this blind estimation problem 
by using a culling approach, wherein high powered frequency components of the SOI that may 
contribute to the modes used to estimate the interferer are culled, by excluding those modes k 

whose frequencies k correspond to frequency bands of the SOI. The culling approach improves 
estimation of the interferer and SOI, typically producing mean-square error (MSE) reduction by an 
order of magnitude or more.  This is tested over a range of power levels and noise levels.  Future 
work includes the development of a joint blind source separation algorithm using the VMD 
method and testing the algorithm with real data, such as speech signals collected in the presence 
of other non-stationary interferers. 
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FIGURE 2: Mean-Square Errors (MSEs); Speech Interferer and Tone SOI; K = 10. 
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FIGURE 3: Mean-Square Errors (MSEs); Speech Interferer and 10 Hz/s Chirp SOI; K = 10. 


