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Abstract 

 
Speech synthesis quality depends on its naturalness and intelligibility. These 

abstract concepts are the concern of phonology. In terms of phonetics, they are 
transmitted by prosodic components, mainly the fundamental frequency (F0) 
contour. F0 contour modeling is performed either by setting rules or by 

investigating databases, with or without parameters and following a timely 
sequential path or a parallel and super-positional scheme. In this study, we opted 
to model the F0 contour for Arabic using the Fujisaki parameters to be trained by 

neural networks. Statistical evaluation was carried out to measure the predicted 
parameters accuracy and the synthesized F0 contour closeness to the natural 

one. Findings concerning the adoption of Fujisaki parameters to Arabic F0 
contour modeling for text-to-speech synthesis were discussed. 

 
Keywords: F0 Contour, Arabic TTS, Fujisaki Parameters, Neural Networks, Phrase Command, Accent 
Command.

 
 

1. INTRODUCTION 

TTS systems have known much improvement with a variety of techniques. However, naturalness 
is still a troublesome aspect, which needs to be looked after. In fact, naturalness is too large as a 
concept; it may be related to the speech synthesizer, which is required to produce an acoustic 

signal matching as closely as possible to the natural waveform, or to the listeners, who react 
perceptually to the sound they hear [1].  
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In both cases, it’s prosody which is responsible of the naturalness quality. Prosody includes the 
underlying features spanning the speech segments. Again, there is a twofold definition of 

prosody, according to the adopted viewpoint. Thus, phonologically speaking, prosody stands for 
stress, rhythm and intonation. These terms describe the cognitive side of speech. Translated into 
phonetics, these abstract definitions are quantified by the signal’s amplitude, duration and F0 

contour [1].  

The latter feature, i.e. F0 contour, is the physical transmitter of the acoustic information, whether 
linguistic, para-linguistic or non-linguistic. Linguistic information includes the lexical, syntactic and 

semantic data present in the text, while para-linguistic data describe the speaker’s intention, 
attitude and style. Finally, non-linguistic information is related to his physical and emotional state 
[2]. 

All these sides, acting simultaneously to produce speech, need a model able to re-synthesize the 
F0 contour transmitting them. Nevertheless, modeling F0 contour is subject to many constraints, 
according to the approach to be used. Thus the way these data are dealt with is responsible of 

the modeling strategy, either in a timely manner, i.e. sequentially, or in a parallel and super-
positional manner.  

Besides, the presence/absence of parameters in the adopted model is a key index for its 

applicability. In fact, non-parametric modeling, in spite of its simplicity, is of lesser relevance than 
parametric modeling, which provides the opportunity of multi-language applicability.  
For instance, the Fujisaki model is a super-positional model, inspired from the early works of 

Ohman [4], and developed to provide an analytical description of the phonatory control 
mechanism, through the introduction of three basic concepts: 

1. The baseline frequency Fb 

2. The phrase command 
3. The accent command 

Then the overall F0 contour is calculated in the logarithmic domain as the superposition of the 

aforementioned concepts. 
Since Fujisaki model is parametric, the main task is to measure its parameters. This can be done 
either by approximation, using the analysis-by-synthesis technique, [5] and [6], or by prediction, 

[22] and [23].  

Amongst the prediction techniques, neural networks are famous for their generalization power, 
through capturing the latent relationship between an input set and the matching outputs, to be 

able to guess the value of any new coming sample. Nevertheless, supervised learning, i.e. 
specific and separate input and output sets, is highly recommended to ensure a faster 
convergence of the neural networks [7]. 

In the framework of Arabic TTS synthesis, we opted for a parametric tool, i.e. the Fujisaki model, 
to generate synthesized F0 contours after the analysis of a phonetically balanced Arabic speech 
corpus. 

Hence, we started by extracting the Fujisaki parameters from our corpus, using Mixdorff’s tool [8]. 
Then neural networks were used to train a learning set, covering 80% of the corpus to predict the 
parameters related to the test set.  
In this paper, we start by defining the different levels of intonation modeling, to locate the Fujisaki 
model and describe its components. Then, after a short description of our corpus and the 
extraction method, the selected neural architecture is explicitly shown, with the various involved 
phonological, contextual and linguistic features. Finally, synthesized F0 contours and original 
ones are compared using statistical coefficients, and the synthetic parameters are discussed. 
These instructions are for authors of submitting the research papers to the International Journal 
of Computer Science and Security (IJCSS). IJCSS is seeking research papers, technical reports, 
dissertation, letter etc for these interdisciplinary areas. The goal of the IJCSS is to publish the 
most recent results in the development of information technology. 
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2. INTONATION MODELING  

 
2.1 Phonological vs. Phonetic Models 
Phonological models attempt to explain the intonation system of a language through a set of 

principles of intonation and the relationship between intonation processes and the linguistic units, 
mainly syllables. This implies that phonological models are not directly related to the physical 
waveform, they are rather a symbolic representation. 

In contrast, phonetic models focus more on the alignment of intonation movements with phonetic 
segments and their temporal location, which is a physical representation [1]. 
For example, the Tilt model is a phonetic intonation model using a continuous description of F0 

movements based on acoustic F0 data [28] while ToBI model [3], is based on a linguistic survey 
which divides the speech tones into phonological categories having each its own linguistic 
function [9]. 
Then, F0 pattern is inferred from the relationship between the phonological sets ad their assigned 
linguistic functions. However, phonological categories may linguistically interfere, causing mutual 
interaction between the linguistic functions. This phenomenon may seriously affect the model’s 
results [10].  
 
2.2 Rule-based vs. Data-driven Models  
The rule-based models emphasize on the representations which capture maximal generality and 
focus on symbolic characterizations. This is completely compatible with the human way to 

produce speech, which variability depends on these abstract representations. But linguistics 
focus on the cognitive aspect of speech at the expense of data itself, which is, actually, the visible 
aspect. 

On the opposite side, speech data-driven modeling doesn’t require a close interaction with 
linguistics. Certainly some linguistic rules have to be considered or used to extract meaningful 
data, but do not interfere in processing, and do not impose major constraints on the output. This 
approach has proved that such models can explore areas that linguistics cannot reach, and give 

answers that they haven’t found, thanks to its high-level computational processing, and also 
because of the difficulty to simulate the phonological and cognitive rules related to speech 
production.  

Although these constraints can be modeled by using uncertainty, in the form of probability 
characterizations, it is still a wide and deep area to be explored, looking to the various and 
complicated interactions lying in [1].  

In the case of intonation modeling, the rule-based modeling was used to generate F0 by targeted 
interpolation [3]. Actually, linguistic rules are first set to define the target functions of every 
syllable structure. This function allows them to place the pitch target in the right range, between 

the top and base values [11]. 
Data-driven models are based on a phonetic and prosodic segmentation and labeling of the 
speech corpus. This data is used to predict either F0 movements or F0 values. For example the 
Tilt model is used for English pitch modeling using accent marks [11]. Besides, data-driven 
methods don’t need a deep linguistic exploration and therefore are more adapted for statistical 
learning. Then they can be used to predict the pitch pattern using either a parametric 
representation or not. 
 
2.3 Superpositional vs. Sequential Models 
Superpositional models are built upon the idea that F0 contour can be seen as the result of the 
interaction of many factors at different levels of the utterance, such as the phoneme, the syllable, 

the word...etc. Thus instead of processing the F0 contour as a whole, the study can be split into 
many sub-models dealing each with a particular level, to be combined later to generate the 
desired F0 contour.  
Sequential models stand on the other edge. They aim to generate F0 values or movements either 
directly or by means of parameters, but in both cases, they rely on a sole model moving from the 
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beginning to the end of the utterance. Hence, the components of the F0 contour are generated 
together at any particular instant of speech [9]. 
 
2.4 Parametric vs. Non Parametric Models 
In intonation modeling, parameterization consists in transforming the original F0 values into some 
parametric forms. Hence, instead of predicting the F0 values, it would be enough to predict the 
values of its parameters, to re-synthesize the F0 contour. 

In contrast, the non-parametric approach consists in estimating the F0 values directly from a set 
of features. Though its simplicity and its direct scheme, the latter method provides equivalent 
results when compared to the first one. Actually, the F0 values are considered as meaningful and 
intrinsic linguistic parameters, and thus, predictable from linguistic features.   

However, non-parametric modeling proceeds directly, discarding the hierarchy and especially the 
interactions of the various input features. Hence, the components of the F0 contour are ignored 
and its movements are neglected at the expense of its values. So forth, a post-processing is 

required to ensure the smoothness of the estimated F0 contour. 
This post-processing action is not required while parametric modeling, as the prediction of each 
parameter is made in a local level, e.g. the syllable, then smoothness is inherently processed. 
Nevertheless, care should be taken in the parameterization process, as too many parameters 
may provide better prediction accuracy, but on the other hand, may cause the loss of linguistic 
meaning [12]. 

3. FUJISAKI INTONATION MODEL  

This is a phonetic data-driven superpositional and parametric model for intonation. It starts from a 
physiological interpretation of the intonation to provide an analytical description in the logarithmic 
domain through the introduction of some theoretical concepts such as the accent and the phrase 

commands [2]. 
Thus, the F0 contour is considered as the response of the mechanism of the vocal cord vibration 
to the accent and phrase commands. So forth, the Fujisaki model gives a twofold description of 
the intonation:  

1. A physiological and physical description of the phonatory control mechanisms through 
the shapes of phrase and accent components. 

2. An analytical description through the magnitude, the timing and the superposition of the 

aforementioned commands. 

 
3.1 Physiological Description  
Fujisaki applied the Buchthal & Kaiser formulation of the relationship between the tension, T, and 
the elongation of skeletal muscles, x, to the vocal muscle 
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Actually, the passage to the logarithmic domain is helpful to achieve a linear superposition, and 
so forth, a decomposition of the model into accent and phrase components. The constant (C0.a

1/2
) 

refers then to the baseline frequency Ln(Fb) which is constant during each utterance. 
As the elongation of the vocal muscle, x, is associated to the tension of the glottis, a further 
decomposition of the movement of the glottis into a rotation around the cricothyroid joint and a 
translation of the thyroid against the cricoids allows introducing the concept of the accent 



Zied Mnasri, Fatouma Boukadida & Noureddine Ellouze 

Signal processing: An International Journal (SPIJ), Volume ( 4): Issue(6)  356 

component which refers to the rotation of the glottis, and the phrase component describing its 
translation [13]. 
 
3.2 Analytical Description 
The Fujisaki model describes F0 as a function of time in the logarithmic domain by achieving a 
linear superposition between: 

1. The baseline frequency, which doesn’t alter along the sentence 

2. The phrase component 
3. The accent component 

The phrase and accent components are the outputs of 2 second-order linear systems, called the 
phrase and the accent commands [14]: 
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The parameters Ap, T0, Aa, T1, T2, α, β and γ are called the Fujisaki parameters. 

As inferred by the formulation of Ln(F0), Fb denotes the asymptotic value of F0 in absence of 
accent commands. Furthermore, it is proved that Fb is highly correlated to the mode of the 
sentence. It has higher values in direct Yes/No questions than in declarative statements [15]. 

 
 

1. The Phrase Component  

The phrase control mechanism is a second-order linear system whose impulse response 

is stated in (5).Then the output impulses are defined by their magnitude Ap and onset 
time T0. The parameter α is constant during an utterance. Hence, Ap describes the 
declination degree in an utterance, and therefore cannot be subject of comparison 

between different types of utterances.  
 

2. The Accent Component  
The accent command is also a second-order linear system whose step-response is 
stated in (6). Then, the accent command introduces a magnitude Aa, an onset time T1 
and an offset time T2. Besides, the parameter β is constant during an utterance. The 
same for γ, which is fixed to a ceiling value of 0.9 to ensure that the accent component 
will converge to its maximum in a finite delay. As T2 is usually higher than T1, the 
variation of F0 is proportional to the accent component magnitude Aa, which was 
extended to the negative domain to be able to apply the model to many other languages 
[15]. 

 
3. F0 Contour Analysis  

In order to obtain an optimal approximation of the F0 contour, the analysis by synthesis of 

the natural F0 contour is applied [6]. This is done by modifying the input commands of the 
model until: 

• The F0 contour is approximated 

• The result is linguistically interpretable 
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These constraints are either linguistic, describing the relationship between linguistic units and 
structures, or paralinguistic, dealing with phrase and accent components. 
 

 
FIGURE 1: Fujisaki model components [4] 

 
3.3 Motivation to use the Fujisaki model for Arabic 
The Fujisaki model sound physiological background has been a great asset to its application to 
other languages. In fact, the model is based on the analytical formulation of the larynx 

movements, which are more related to the phonatory control system than to the linguistic rules. 
For instance, a polyglot speaker is able to produce, with his own larynx, the same intonation 
patterns as a native speaker [14].  

Furthermore, the model can be modified to meet the specifications of the language to model. In 
fact, after its success in modeling, first Japanese [16], then English F0 contours [36], it was 
adapted to many languages of different etymologies, Nordic (German and Swedish), Latin 
(Spanish and Portuguese) or south-east Asian (Chinese and Thai). This large use of the model 

brought many benefits to its primary formulation. For example, the falling accents can be modeled 
by introducing negative accent commands Aa.  
Hence, the modified characteristics reveal the specific prosodic constraints of the language, while 
the invariable properties are mainly related to the speaker, regardless his language. Therefore, 
the Fujisaki model is potentially able to model the Arabic intonation. 
 

4. SPEECH MATERIAL 

4.1 Speech corpus 
For this survey, we used a 200-Arabic-sentence corpus recorded by a male voice, with a 16-Khz 
sampling rate and 16-bit encoding, including the entire Arabic alphabet, composed by 28 

consonants, 3 short vowels and 3 long vowels. In addition, amongst the 6 types of Arabic 
syllables, the most used ones are present in the corpus, i.e. /CV/, /CVV/, /CVC/ and /CVVC/ [29].  
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Corpus level Type Quantity 
Sentence Declarative 160 

Interrogative  20 
Imperative 20 

Syllable Opened and short  /CV/ 721 
Opened and long /CVV/ 315 
Closed ans long /CVC/ 
and /CVVC/ 

519 

Phoneme Vowels 43% 

Consonants 57% 
 

TABLE 1: Balanced Arabic corpus hierarchy and composition. 

 
This corpus was first translated into phonetics, then segmented and labeled using spectrogram 
and waveform tools. The segmented data was stored in a database containing two levels: the 
predictors, i.e. the input features and the observations, i.e. the actual segmented durations. Then 
the main task while shaping the input space consists in classifying these features. Therefore, a 
twofold classification was suggested. The first part is linguistic, where segmented data are 
divided according to their contextual, positional and phonological aspects, and the second is 
statistical, as input data can be categorical or continuous. This classification generates a 2-
dimension array where every factor is described according to its linguistic and numerical classes. 
 
 
4.2 Fujisaki Parameters Extraction 
Fujisaki constants, α, β and γ of the recorded voice were set at, respectively, 2/s, 20/s and 0.9 
[17]. The Fujisaki parameters were obtained by Mixdorff’s tool [18] which applies a multi-stage 

process called ‘Analysis-by-Synthesis’. This process allows extracting the baseline frequency Fb, 
the phrase and the accent commands parameters through the minimization of the minimum 
square error between the optimal synthetic F0 contour and the natural F0 contour [6].The first step 
consists in quadratic stylization using the MOMEL algorithm [19] to interpolate the unvoiced 

segments and the short pauses within the F0 curve, and to smooth the microprosodic variations 
due to sharp noises. Then, a high-pass filter is used to separate the phrase and the accent 
components through the subtraction of the filter output from the interpolated contour. This yields a 

low frequency contour containing the sum of phrase components and Fb. The third step consists 
in initializing the command parameters, i.e. Ap, T0, Aa, T1 and T2. Finally, the synthesized contour 
is optimized, considering the interpolated contour as a target and the mean square error 

minimization as a criterion [18]. 
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 TABLE 2: Accent command’s input features 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

TABLE 3: Phrase command’s input features 

5. MODELING FUJISAKI PARAMETERS WITH NEURAL NETWORKS 

5.1 General Neural Scheme 
Neural networks are famous for their large ability to link the input to the output through a 
functional relationship. Therefore, they have been used in several intonation models, not only to 
predict F0 values [20] or F0 movements [21], but also F0 parameters [22] and [23]. 

Input features types  Phrase command input features 
Phonological • Sentence mode 

• Phrase command syllable type 
• Phrase command syllable accent level 

• Nucleus weight 

Positional • Phrase command syllable position in sentence 
• Number of syllables in sentence 

• Nucleus position in phrase command syllable 

• Number of phonemes in phrase command’s syllable 
• Nucleus position in sentence 

• Number of phonemes in sentence 

Contextual • Nucleus duration 
• Phrase command syllable duration 

• Sentence duration 

• Utterance’s baseline frequency (Fb) 
Extra features for T0 • Ap predicted for phrase command 

 

Input features types  Accent command input features 
Phonological • Sentence mode 

• Syllable type 

• Syllable accent level 
• Nucleus weight 

 
Positional • Accent command rank in sentence 

• Number of accent commands in sentence 

• Accented syllable position in sentence 
• Number of syllables in sentence 

• Nucleus position in accented syllable 

• Number of phonemes in accented syllable 
• Nucleus position in sentence 

• Number of phonemes in sentence 
 

Contextual • Nucleus duration 
• Previous phoneme’s duration in accented syllable 

• Accented syllable’s duration 

• Sentence duration 
• F0 in beginning of accented syllable 

• F0 at end of accented syllable 

• F0 movement in accented syllable 
 

Extra features for Aa • Predicted accent command duration (T2-T1) 
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Though the modeling goal may differ, the approach is always the same. Neural networks are 
used to map a learning set, representing intonation-related features to a target set. Once learning 

is achieved, the model becomes able to predict the output from the test set inputs. 
In most cases, the learning set includes 80% of the samples whereas the test set covers the 
remainder. The input features consist of a variety of speech characteristics, describing different 

aspects. However, these features should be selected looking to their correlation with the 
intonation. According to a previous survey we made about segmental duration using neural 
networks [30], the introduction of some features may give better prediction accuracy, whereas it’s 
best to discard other features. Though the targets are different, as we are aiming to predict the 

Fujisaki parameters, it is still important to study the relevance of every feature or class of 
features. 
Besides, the variety of the targets requires different implementation schemes for the neural 

networks. Hence, looking to our corpus composed of 200 separate sentences, we decided to 
assign a single phrase command for every sentence and at most one accent command for every 
syllable. 

Then the task is to predict Fujisaki Parameters related to each aspect. For the phrase command, 
we need to predict Ap and T0, and for the accent command, we need to predict Aa, T1 and T2. It 
looks obvious that we are looking for different types of targets at different levels, i.e. amplitudes 

and temporal locations for sentences and syllables. Therefore, the neural processing should be 
carried out in a parallel and distributed way to predict every single target on its own. Furthermore, 
we have noted that the targets themselves are well correlated with each other at each level, i.e. 
Ap and T0, Aa and (T2-T1). Therefore we set a double tier strategy where, at every level, i.e. the 

sentence or the syllable level, the predicted parameters are used as inputs to predict the other 
ones. This strategy has been helpful to give better results, as it captures the latent relationship 
between the amplitude and the location of phrase and accent commands.  

In addition, we opted for a 4-layer feed-forward neural network to model each parameter, i.e. 
using 2 hidden layers and a single-node output layer. Actually, it’s been proved that a 2-hidden-
layer neural network is able to model any continuous vector-valued function [24]. The first hidden 

layer is used to capture local features from the input, while the second hidden layer is required to 
capture the global features.   
For the activation functions, we used a linear function at the output whereas they were non linear 

at the hidden layers, respectively the logistic sigmoid function and the tangent hyperbolic function. 
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FIGURE 2: General neural network’s scheme : a 2-hidden-layer FFNN with respectively, sigmoid and 

hyperbolic tangent transfer functions.  

 
5.2 Modeling Phrase Command 
In order to predict the phrase command parameters, i.e. Ap and T0, we used an input set covering 

the contextual, phonological and positional features extracted from the corpus.  
It’s necessary to stress that the sentences of the corpus are totally distinct, which implies that 
contextual features are strictly internal to the sentence. Therefore we don’t encounter any feature 
like ‘previous phrase command amplitude’ or ‘previous phrase command timing’ in the learning 

set.  
However, looking to the high correlation between Ap and T0, we start by predicting the Ap to be 
used later as input for T0 prediction, but again, only within the same sentence. Also, to normalize 

the output, we opted to use the logarithm of the squared values for the temporal locations of the 
phrase commands. 
 
5.3 Modeling Accent Command 
In order to build the learning set to be mapped to the extracted targets, a certain number of 
constraints have to be considered: 

 
1. Only accented syllables have accent commands, and one syllable have at most one 

accent command. 

2. Each accent command is defined by its amplitude Aa, its onset time T1 and offset time T2. 
If the accented syllable lies in the beginning of the sentence, the accent command can 
start before the accent group, but in any case, the accent command cannot end beyond 

the accent group [25].  
In addition to these constraints, we adopted 2 major modifications to the Fujisaki model, which 
were suggested to allow its extension to other languages, i.e. German and Swedish:  

1. For the interrogative sentences, a final rise component is added. It’s represented by an 
extra accent command [26]. 

2. Accent command magnitude, Aa, can be negative [27]. 
 

Input layer 

 
Output layer 

 

Hidden layers 
 with transfer 

 functions 
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FIGURE 3: Ap training error                                         FIGURE 4: T0 training error  

 

 
 

FIGURE 5: Aa training error                                         FIGURE 6: (T1,T2) training error  
5.4 Selection of Input Features 
For both levels, phrase and accent commands, the input features are treated according to their 
hierarchical class, i.e. the phoneme, the syllable or the sentence. It’s important to note that for 

Arabic, the word is the acoustic unit between 2 successive pauses. However, the phonetic 
transcription doesn’t always match with the text, because of the frequent presence of word-
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boundary-linking syllables. To cope with this problem, we opted for the syllable as the acoustic 
unit. 

The other criteria of features selection are firstly, the type of data values, whether discrete or 
continuous, and secondly their classes, i.e. contextual, phonological or positional. 
Actually, such a broad classification is widely used while dealing with neural networks. As 
learning is supervised, these classes have to be defined to reduce the scarcity of data incurring a 
high-dimension input space, and to get rid of unnecessary data which may reduce the learning 
performance. This pre-processing is also useful to avoid the over-learning problem. Actually, too 
many inputs may yield generalizing the learning exceptions. 

6. EVALUATION AND DISCUSSION  

After training the neural networks for each parameter on its own, the test phase is carried out 
jointly with statistical evaluation. Thus we used the following statistical coefficients to measure the 
accuracy of the model: 

• Mean absolute error  

N
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i ii∑ −

=
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µ                               (7) 

• Standard deviation 
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• Correlation coefficient 
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X and Y are the actual and the predicted F0 values. 
 
Then we used the test results to build synthetic F0 contours to be compared with the original 
ones, which voiced parts were extracted by SHR algorithm [31] whereas we used Praat software 
[32] to locate the voiced and unvoiced parts of speech. 
 
 
 
 
 
 

 
TABLE 4: Statistical evaluation of synthesized F0 contours with extracted F0 contours in the test set. 

Statistical coefficients With extracted F0 contour by SHR 
Mean absolute error 38.59 (29.75%) 

Correlation in voiced parts 0.78
 

Standard deviation 43.12 
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FIGURE 7: Synthesized F0 contour, AC and PC of the Arabic sentence``hal ka:na juqabilukuma: ?’’  

( ``Was he meeting with both of you?’’) 
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FIGURE 8: Extracted and synthesized F0 contours in voiced parts of the Arabic sentence ``hal ka:na 

juqabilukuma: ?’’ ( ``Was he  meeting with both of you?’’) 
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Though we opted to process the Fujisaki parameters separately, we have noticed a certain 
number of dependencies between them, especially within each level, i.e. the phrase and the 

accent groups. Actually, the single-node-output-layer scheme has been advantageous since it 
allowed the use of some already predicted parameters as inputs for the others.  
Although it’s still difficult to appreciate the quality of speech relatively to the synthesized F0 

contour before perceptual tests, the correlation between the natural and synthetic F0 contour can 
tell about the accuracy of the model. 
In addition to the statistical evaluation, these experiments revealed a certain number of notes 
about, not only the output parameters, but also about the predictors, i.e. the input features: 
 
6.1 The Phrase Command’s Evaluation  
 

• The Phrase Command’ Amplitude Ap: It’s highly correlated with the duration of the 

sentence. It has higher values for longer sentences 
 

• The Phrase Command’s Timing T0: This parameter is particularly critical, since it 

describes the very beginning of the phrase component, which precedes the onset of the 
utterance. Looking to our corpus, which is composed of separate sentences, T0 should 
usually be negative, unless there is a silence in the beginning of the utterance. 

 

Generally, the phrase command is higher, only in the beginning, to decay along the sentence, 
and therefore the accent command is more relevant in the global shape of F0 contour. 
 
 

 

 

 

TABLE 5: Phrase command parameters statistical evaluation in the test set 

 
6.2 The Accent Command’s Evaluation  

• Accent command’s onset and offset (T1, T2 ): Unlike the phrase component, the accent 
component is characterized by a variable range of temporal locations. If we consider (T2-
T1) as the accent group duration, and according to a previous study we made about the 

segmental durations [30], then the accent command onset T1 and offset T2 are mainly 
related to the phonological, contextual and positional features of the speech. Yet, a good 
result of the accent group prediction has been helpful to predict its amplitude Aa. 

 

• Accent command’s magnitude Aa: A good prediction of Aa requires, not only information 
about the speech characteristics, but also about the neighboring accent groups, i.e. Aa 
and (T2-T1) of the previous accent group, and (T2-T1) of the actual accent group. In fact, 

the accent component is responsible of the overall shape of the F0 contour after the 
decay of the phrase component, and so forth, the amplitude, the temporal locations of the 
previous accent group, coupled with the F0 movement, provide a relevant indication 

about the accent command amplitude. 
 
The assumption made in the beginning, stating that Aa values can be expanded to the negative 
domain, was verified in the test set. However, synthetic and natural Aa values, for the same 
accent group, don’t have always the same sign. This is due, from one side, to the prediction 
accuracy, and from the other side, to the interaction of the phrase and accent commands, which 
are superposed to generate a natural looking F0 contour. Besides, the contextual input features, 
such as (T2-T1), Aa and F0 movement of the previous accent group, act jointly as correction 
agents to keep watching the fall/rise evolution of the synthesized contour. 

Phrase command 
parameter 

Mean absolute 
error 

Mean Value Correlation 

Ap 0.279 0.779 0.913 
T0 0.072 -0.409 0.508 
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TABLE 6: Accent command parameters statistical evaluation in the test set 

 
6.3 Discussion  

 

• Fujisaki Constants (α, β): In our model, we used average values of the angular 

frequencies α=2/s and β=20/s. The variation of these factors doesn’t alter significantly the 
results. Actually, the tool we used to extract the Fujisaki parameters, [8], allows changing 

their values, but without a great influence on the resulting contour. This confirms many 
previous researches concluding that α and β are mainly speaker-dependent, such as 
English [36], German [13] and Japanese [4] since they characterize the dynamic 

properties of the glottal control mechanism. [4]. 
  
 

• Input Features: A good approximation of F0 contour needs, not only a good model, but 
mainly a representative learning set, able to describe as closely as possible, the various 
interactions and synergies between different contributory types of data. Hence, after the 
feature selection phase, pre-processing is required either to normalize input data or to 
broad-classifying them. In fact, a heterogeneous input set, including different data 
classes with different value ranges may fall in over-fitting, where exceptions could be 
generalized, or may require a high calculation time before the training error falls down to 
an acceptable minimum. Back to the obtained results, the pre-processing phase was of 
great help to tune the output values, improve accuracy and minimize training error. It also 
allowed capturing the inherent relationship between some input features and their relative 
outputs, and therefore guided us to build a personalized predictors set for each following 
parameter. 

 

7. CONCLUSION  

In the general framework of developing an Arabic TTS system, spotlight was focused on 

modeling F0 contour. This task was performed using the Fujisaki model, which parameters were 
extracted by Mixdorff’s analysis-by-synthesis-based tool and trained by neural networks.  
Therefore, a phonetically-balanced Arabic corpus was analyzed, firstly to extract the Fujisaki 
parameters and secondly to select and pre-process the input features used as predictors for the 

neural network. Neural networks were hired for their large ability to capture the hidden functional 
mapping between input and output sets. Many neural schemes were suggested during the 
elaboration of this work, to select those which performed best in the try-and-error test. Then, 

statistical coefficients were calculated between actual and predicted Fujisaki parameters.  
This study revealed also that Fujisaki parameters are dependent at each of the phrase and 
accent levels. Therefore, some of them were used as inputs to predict the other ones. In fact, an 

interaction was noted between the phrase and accent component to keep the overall shape of F0 
contour. Thus, after the decay of the phrase command, the accent command rises, and so forth, 
the F0 contour becomes more sensitive to the accent variations. This note was checked out by 

the introduction of correction agents to the input feature while training. Furthermore, some of 
Fujisaki’s assumptions were verified in this study. Thus negative accent commands were 
necessary to model the variations of the accent group; and the variation of some parameter 

Accent command 
parameter 

Mean absolute 
error 

Mean Value Correlation 

Aa 0.205 0.438 0.595 
T1  0.136 1.134  0.903 
T2 0.141 1.332  0.918 
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values such as α and β didn’t have a relevant impact on the results, confirming that they are 
rather speaker-dependant.  
As a future projection, this model can be used along with our previous study on segmental 
duration modeling [30], to build an integrated model of Arabic prosody, able to generate 
automatically the duration and the F0 contour of an input text. Also, this study can be expanded to 
a paragraph-composed corpus in different Arabic dialects. 
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