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Abstract 

 
The fractional Fourier transform can be considered as a rotated standard Fourier transform in 
general and its benefit in signal processing is growing to be known more. Noise removing is one 
application that fractional Fourier transform can do well if the signal dilation is perfectly known. In 
this paper, we have computed the first and second order of moments of fractional Fourier 
transform according to the ambiguity function exactly. In addition we have derived some relations 
between time and spectral moments with those obtained in fractional domain. We will prove that 
the first moment in fractional Fourier transform can also be considered as a rotated the time and 
frequency gravity in general. For more satisfaction, we choose five different types signals and 
obtain analytically their fractional Fourier transform and the first and second-order moments in 
time and frequency and fractional domains as well. 
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1. INTRODUCTION 
The uncertainty principle is a fundamental result in signal analysis. It is often called the duration-
bandwidth theorem, which is perhaps more appropriate and descriptive for signals. Given a signal 

)(tx  and its Fourier transform (FT), )(ωX , whenever we want to know the time or frequency-

bandwidth, they can be calculated by: 
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In terms of these quantities, the standard uncertainty principle is 
2

1
≥∆∆ ωt . We notify that the 

spectral central moments can also be obtained using the time domain signal as: 
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The uncertainty principle arises, because )(tx
 
and )(ωX  are not arbitrary functions but are a FT 

pair. A proper interpretation of this result is that a signal cannot be both narrowband and short 
duration, since the variances of FT pairs cannot both be made arbitrarily small. 
 
The FT is undoubtedly one of the most valuable and frequently used tools in theoretical and 
applied mathematics as well as signal processing and analysis. A generalization of FT, the 
fractional FT was first introduced from the mathematics aspect by Namis [1] and then considered 
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by McBride [2]. They tried to make the theory of the fractional FT unambiguous and expressed 
the fractional FT in integral form similar to what now a day use. Fractional FT has been 
introduced in signal processing for the first time in [3]. It explored some relationship between the 
best well known time frequency distribution, Wigner Ville, and the fractional FT as well. Fractional 
FT of some functions in addition to its properties was given in [1], [3]-[5]. Specific features of the 
fractional FT for periodic signals were considered in [6]. Generally, in every area where FT and 
frequency domain concepts are used, there exists the potential for generalization and 
implementation by using fractional FT. In most of the signal processing applications, the signal 
which is to be recovered is degraded by additive noise. The concept of filtering in fractional 
Fourier domain is being realized. Some researchers noticed that signals with significant overlap in 
both time and frequency domain may have little or no overlap in a fractional Fourier domain [5], 
[7]. Filtering in a single time domain or in a single frequency domain has recently been 
generalized to filtering in a single fractional Fourier domain. They [8] further generalized the 
concept of signal fractional Fourier domain filtering to repeat filtering in consecutive fractional 
Fourier domains. A methodology for on-line tuning of transition bandwidth of windowed based FIR 
filters using fractional FT was proposed in [9]. The Fractional FT can be interpreted as 
decomposition of a signal in terms of chirps. In [10], an adaptive fractional Fourier domain filtering 
scheme in the presence of linear frequency modulated type noise was considered.  
 
In this paper, we briefly introduce the fractional FT and a number of its properties and then 
present some new results; the fractional moments are independently derived and some 
relationship between moments belong to ordinary and fractional plane are proved; in addition 
example of fractional FT’s of some new and useful signals are obtained and their moments are 
directly determined. 
 
This paper is organized as follows. In section 2, we present the fractional FT and list some of its 
properties. In section 3, we derive the first and second fractional FT moments according to 
ambiguity function (AF) and find some relations among time-frequency and fractional moments 
respectively. In section 4, we obtain the fractional FT of some signals those can be used as an 
additive noise model, and obtain the first and second their fractional moments. Finally section 5 
concludes the paper. 

Note on the Formalism: we will represent by “j” the imaginary unit ( 1−  ) and by a superscript 

asterisk ‘*’ the complex conjugate operation. 
 

2. FRACTIONAL FOURIER TRANSFORM 
In the mathematics literature, the concept of fractional order FT was proposed some years ago 
[1], [2], [5]. The ordinary FT being a transform of order 1, and the signal in time is of order zero. 
The fractional FT depends on a parameter α  and can be interpreted as a rotation by an angle α  

in the time- frequency plane. The relationship between fractional FT order and angle is given by 

2

π
α a= . This section gives a compact review of the theory of fractional FT and some properties 

that will be used throughout this paper. The fractional FT of function )(tx  can be written in the 

form: 

∫
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the kernel ),( utKα  is given by 
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continuous and interpreted as a rotation angle in the phase plane. When α  increases from 0 to 

2

π
, the fractional FT produce a continuous transformation of a signal to its Fourier image. If α  or 

πα +  is a multiple of π2 , the kernel reduces to )( ut −δ  or )( ut +δ  respectively. We also note 
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that for 
2

π
α = , the kernel coincide with the kernel of the ordinary FT. In summary, the fractional 

FT is a linear transform, and continuous in the angle α , which satisfies the basic conditions for 

being interpretable as a rotation in the time- frequency plane [3]. Fractional FT is the energy-
preserving transform [3], it means: 

duuXdttx ∫∫
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∞−
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= 22 |)(||)(| α                   (6) 

Due to the energy-preserving property of the FT, the squared magnitude of the FT of a signal 
2
|)(| ωX  is often called the energy spectrum of the signal and is interpreted as the distribution of 

the signal’s energy among the different frequencies. As the fractional FT is also energy 

conservative, 2|)(| uXα  is named as the fractional energy spectrum of the signal x(t), with angle 

α . 

In time-frequency representations, one normally uses a plane with two orthogonal axes 
corresponding to time and frequency respectively, (Fig. 1). 
 

 
FIGURE 1: time- frequency plane and a set of coordinates ),( vu  rotated by an angle α  relative to the 

original coordinates ),( ωt . 

 

A signal represented along the frequency axis is the FT of the signal representation )(tx
 
along 

the time axis. It can also be represented along an axis making some angle α  with the time axis. 

Along this axis, we define the fractional FT of )(tx  at angle α  defined as the linear integral 

transform (Eq. 5). It is easy to prove that pairs ),( ωt  and ),( vu  corresponding to an axis rotation 

by: 
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   Although many properties were known for fractional FT, it is convenient to include in this 

preliminary section three results which will be useful later on. Now according to )()( uXtx
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we denote these properties, they are named shift, modulation, and multiplication as follows: 
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3. FRACTIONAL MOMENTS BASED ON AMBIGUITY FUNCTION 
We suppose that an optimal fractional domain corresponds to minimum signal width. Calculation 
of this moment can be done analytically, based on using the AF which can be interpreted as a 
joint time- frequency auto correlation function. In this paper, based on connection between the AF 
and the fractional FT, we derive the fractional moments, though the first and second moments 
were obtained in [11] and [12] before. These moments are related to the fractional energy spectra 
and therefore can be easily measured for example in signal analysis. The AF of a signal )(tx  is 

defined as [13]: 
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It is easy to show that: 
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Before starting to derive the first and second-order moments in fractional FT based on the 
moments in time and frequency, we recall that as fractional FT is a linear transform and energy 
conservative, so in general the fractional moments can be considered as: 
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Now according to the fractional FT definition (Eq. 5), and shift and modulation properties (Eqs. 9 
and 10), we rewrite the AF as follows: 
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3.1 Time Moments 
Although it takes really long analytic computation, we try to obtain the first and second-order 
moments belong to time according to Eq. (12) and by using Eq. (15) as follows: 
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Easy using equation (16), and (11) show the fractional FT is energy conservative or unique signal 
has unique fractional FT and so the transform is reversible 

( duuXdttxAFE xx ∫∫
+∞

∞−

+∞

∞−

=== 22
|)(||)(|)0,0( α ). We consider the signal energy is 1 ( 1=xE ). Now we 

determine the first derivative in order to determine the first order moment in time domain: 
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Similarly, the second-order moment in time domain can be obtained by the second derivative of 

AF as: 
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Now we should simplify the derived equations for the first and second-order moments in time 
domain. Using Eqs. (5) and (15) for fractional FT definition, it is not too hard to prove the following 
relationship: 
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Thereby, we rewrite the first and second order moments: 
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As u  and v  are orthogonal axes (Fig. 1), we can obtain moment in v  domain by using signal in 

u  domain as: 
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Now the first and second order moments for time domain and then duration are obtained 
according to the fractional moments: 
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where 2
u∆  and 2

v∆  refer to signal dilation in fractional plane. 

 
3.2 Frequency Moments 
Exactly the same algebra is used in order to obtain frequency moments. By notifying Eq. (13) and 
usind Eq. (15), we write: 
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As we consider the signal energy equal to 1 then the spectral second order moment is: 
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In order to simplify the derived equations, the following relations by employing Eqs. (5) and (15) 
are determined: 
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And now, the first and second spectral moments and also signal bandwidth are written as follows: 
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In order to make the derived equations more readable, we define the first and second order 

moments and signal dilation according to their corresponding plane. They are >=< tm0 ; 
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Result1: according to the derived equations (25) and (34), and using the above definitions, we 
have: 
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As rotation is true for pairs ),( ωt  and ),( vu , (Eq. 8), obviously it is also true for the first moments 

in original plane. This result emphasize on why fractional FT is considered as a rotation operator. 

The first order moment, >=< umα , in a fractional domain defined by an arbitrary angle α  can 

be calculated from the relationship 

2

0 sincos πα αα mmm += .  

Result 2: Taking into account Eqs. (25), (26), (34), and (35), we conclude the following 
relationships: 
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According to what are derived, we can say the first, and the second moments as well as dilation 
are rotate invariant. 
 
Result 3: At first we notice to Eqs. (27) and (36), that duration in time or bandwidth in frequency 
domain should be real positive value because of physical interpretation, so the imaginary parts in 
two above referred equations are to be considered equal zero. In addition if signal in fractional 
domain supposed to be real, then we have: 

2

2

2

2
0 2sincossin π

α
ααπ

α
αµαµαµ

++
++= mm             (39) 

2

2

2

2

2

2sinsincos π
α

ααπ
α

π αµαµαµ
++

−+= mm             (40) 

So in a fractional domain defined by an arbitrary angle α , the signal dilation can be computed by 

duration in time, bandwidth in frequency and the first order moments. 
 

4. DIFFERENT SIGNALS 

Fractional FT of a number of common signals such as )2/exp( 2t− , )(tδ  , and tkj
e  were 

computed before [1]. It was proved that fractional FT also exist for certain functions which are not 

square integrable (for example:
 

etc,,,1
2

tt  ) [1] ( as in Z transform using r causes having this 

feature, here being α  causes this effect). Fractional FT has attracted a great attention. Some 

researchers try to discover its features more [6], and some try to use it in application. 
Conventionally, the filtering systems are based on the FT, though the frequency of the noise and 
that of the signal usually overlap with each other, so it is very difficult to filter the noise 
completely. So it may conclude that filtering in the optimal fractional domain is significantly better 
than filtering in the conventional frequency domain. Fractional Fourier domain filtering in a single 
domain is particularly advantageous when the distortion or noise is of a chirped nature [7], [10], 
[14]. For further application of the fractional FT analysis, it is important to study its effects on 
different types of signals. It was suggested that instead of filtering in time or frequency, it can be 
done better in rotated domain where the signal spreading is low. It means that obtaining the 
central moments and explore their behavior are important topic for design an optimum filter in 
rotated domain or fractional FT. In this section, we will obtain the fractional FT for five different 
type functions which can be considered as a model for additive noise. We also compute the 
corresponding first and second fractional order moments and derived some relations among time, 
frequency and characteristics belong to rotated coordinates as well. At the end, we notify that as 
the energy of these five signals are not equal to 1, we divide the calculated moments by signal 
energy. 
 
4.1 Gaussian Function 
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Obviously, it is easy to show that )()(
2

ωπ
αα jXuX =

=
 , this result prove the computed procedure 

has done correctly. The central moments in time, frequency, and fractional domain are written in 
Tabel 1.  
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TABLE 1: The central moments of Gaussian function. 

 
We see that Eq. (37) is satisfied. On the other hand, it was proved in [15], for any real valued 

signal inequality, 22
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2

2 )
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4

1 βα

σ

βα
βασµµ βα

−
++= . It means that 

Gaussian function has the least dilation not only in time and frequency domain but also in 

fractional domain among all different signals. Now, if we compute 
α

µα

∂

∂
 for Gaussian function, we 

see that for 1|| <σ , the least dilation happens in time and for 1|| >σ , the least dilation happens at 

an angle 
2

π
α =  in frequency domain. So considering Gaussian as an additive noise, it is better to 

perform filtering in time or frequency not in fractional domain. 
 
4.2 Laplace Function 

The laplace function is 0;)(
|| >= −

betx
tb

 and its energy is equal to 
b

Ex

1
=  . The classic FT is, 

)(2

2
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22 ωπ
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jX , and the fractional FT is obtained: 
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According to the derived Eq (42), we suggest the fractional FT of Laplace function is written as 
follows: 

)
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u
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j
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The central moments in time, frequency, and fractional domain are written in Tabel 2.  
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TABLE 2: The central moments of Laplace function. 

 

Obtaining 
α

µα

∂

∂
, we conclude Laplace function has the least dilation in time domain. 



Sedigheh Ghofrani 

 
 

Signal Processing: An International Journal (SPIJ), Volume (5): Issue (1) : 2011                                   9 

 
4.3 One Sided Gaussian Function 

One sided Gaussian function is )()(
2

2

2 tuetx

t

σ
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= , and the signal’s energy is equal to 

σπ
2

1
=xE . Although it is really simple, we obtain the FT, 
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fractional FT as: 
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As it is seen, )()(
2

ωπ
αα jXuX =

=
 , and this result show the derived fractional FT for one sided 

Gaussian function is definitely correct. The central moments in time, frequency, and fractional 

domain are written in Tabel 3, the value of k  is the same as what defined for Gaussian function.  
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TABLE 3: The central moments of one sided Gaussian function. 

 
4.4 Rayleigh Function 

Rayleigh function, )u()(
2

2

2 ttetx

t

σ
−

= , is known especially in wireless communication. Its energy is 

equal to 
4

3σ
π=xE , and the FT is 

2
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32
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ω
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⋅−= ejjX . Now we obtain the fractional 

FT for Rayleigh function: 
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As it is seen, )()(
2

ωπ
αα jXuX =

=
 , and this result show the derived fractional FT for Rayleigh 

function is correct. On the other hand, according to the property that described by Eq. (10), we 
are able to find the fractional FT of Rayleigh function by using the one sided Gaussian function as 
follow: 
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It is seen that there is not constant term in (46). The time and the frequency moments of this 
function are written in Table 4, though because of complexity of the Eq. (45) we could not find the 
fractional moments analytically. 
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TABLE 4: The central moments of Rayleigh function. 

 

Although we could not find αm  directly, according to the derived relationship in Eq. (37), it may 

conclude that α
π

σ
α cos

2
=m  . 

 
4.5 One Sided Exponential Function 

One sided exponential is 10;)u()( <<= btbtx
t , and its energy is equal to 
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= . The 
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TABLE 5: The central moments of one sided exponential function. 

 
It is seen that the signal has always the least dilation in time domain. 
 

5. CONCLUSIONS 
The fractional Fourier transform moments may be helpful in the search for the most appropriate 
fractional domain to perform a filtering operation; in the special case of noise that is equally 
distributed throughout the time-frequency plane, for instance, the fractional domain with the 
smallest signal width is then evidently the most preferred one. In this paper we have derived the 
new relations between central moments in time, frequency, and fractional domain by employing 
the ambiguity function. In addition, we have obtained the fractional Fourier transform and 
fractional moments for different signals directly. Thereby we conclude except chirp signal, there 
are many signals whose dilation are least in time or frequency, the original plane not rotated 
plane. 
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