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Abstract 

 
Underwater noise sources constitute a prominent class of input signal in most underwater signal 
processing systems. The problem of identification of noise sources in the ocean is of great 
importance because of its numerous practical applications. In this paper, a methodology is 
presented for the detection and identification of underwater targets and noise sources based on 
non parametric indicators. The proposed system utilizes Cepstral coefficient analysis and the 
Kruskal-Wallis H statistic along with other statistical indicators like F-test statistic for the effective 
detection and classification of noise sources in the ocean. Simulation results for typical 
underwater noise data and the set of identified underwater targets are also presented in this 
paper. 
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1. INTRODUCTION 

Underwater acoustic propagation depends on a variety of factors associated with the channel in 
addition to the characteristic properties of the generating source. Studies on noise data 
waveforms generated by man made underwater targets and marine species are significant as 
they will unveil the general characteristics of the noise generating mechanisms. The composite 
ambient noise containing the noise waveforms from the targets, received by the hydrophone 
array systems are processed for extracting the target specific features.  Though quite a large 
number of techniques have been evolved for the extraction of source specific features for the task 
of identification and classification, none of them are capable of providing the complete set of 
functional clues.  Of these, many of the techniques are complex and some of them lead to 
ambiguities in the decision making process.  Since classification of noise sources using certain 
traditional techniques yields low accuracy rates, many improved approaches based on non-
parametric and parametric modeling have been mentioned in open literature [1]. Some of the 
modern approaches for the extraction of spectral profiles give more emphasis to spectral 
resolutions and increased signal detection capabilities while others rely on the extraction and 
utilization of acceptable features of underwater signal sources .The proper identification and 
classification of underwater man-made and biological noise sources can utilize the  cepstral 
feature extraction and  non parametric statistical approaches which do not rely on any 
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assumption that the data are drawn from a given probability distribution and includes non 
parametric statistical models, inference and statistical tests. The Kruskal-Wallis H test is a non 
parametric test and the H statistic can be efficiently employed in different statistical situations[2]. 
The underwater noise signal is sampled, processed and cepstral features are extracted and 
hence the sample set of transition probability values of the system model is estimated. The H 
statistic, F-test statistic, Median value and Sum of Ranks are estimated for the sample sets of 
various underwater signals, the transition probability values and a reference signal, which were 
found to be occupying non overlapping value ranges and can be utilized in the system design for 
the identification of underwater signal sources. 
 

2. PRINCIPLES 

Cepstral coefficients are widely used as features for a variety of recognition and classification 
applications. In a cepstral transformation, the convolution of two signals x1[n] and x2[n] becomes 
equivalent to Xc, which is the sum of the cepstra of the two signals.  
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Defined otherwise, P discrete cepstrum coefficients[3], cp where p = 0,…..P-1 define an amplitude 
envelope │H(ω)│equals exp(c0 +2∑p  cpcos(pω)) with p varying from 1 to P-1. 
The Inverse Fourier Transform of the log amplitude gives the cepstral coefficients. The discrete 
cepstrum coefficients can be described by a set , at frequencies ωk with amplitudes Xk with k= 
1,….P. This can be expressed mathematically: 
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where �(ω) denotes the Dirac delta distribution. The calculation of cp can be done by minimizing 
the square difference of │H(ω)│ and │X(ω)│. 
 
Non parametrical analysis provides effective methods for target detection and classification of 
underwater targets.  Such a strategy may also be incorporated into a hierarchical classification 
framework, where a target is first assigned to a class and later with additional information, it may 
be identified as a particular target within that class. In order to train a statistical model for each 
class, many methods can be used, which may consist of several training states. The system can 
be trained on the target data associated with their respective classes. Statistical non parametric 
tests can be considered as an alternative for comparisons of data of which the distribution is not 
Gaussian[4]. The exact distribution of H-statistic in the Kruskal-Wallis test is conventionally fitted 
to a Chi-squared approximation. In state based models, the sequence of tokens generated by it 
may give some information about the sequence of states. Even though the states possess 
different attributes, for many practical applications there will be often some physical significance 
associated to the set of states and their transition probabilities. The proposed procedure can 
utilize a codebook to estimate the required parameters. In a codebook, a large number of 
observational vectors of the training data is clustered into a certain number of observational 
vector clusters using K- means iterative procedure. Based on this clustered observational vectors, 
estimates of the parameters are generated during system modulation.  
 
2.1 LPC Analysis 
Linear Prediction Coefficients(LPC) Analysis is used to calculate the Cepstral coefficients. LPC is 
a powerful modeling technique used for signal analysis. LPC encodes a signal by finding a set of 
weights on earlier signal values that can predict the next signal value. Linear prediction 
coefficients can be transformed to cepstral coefficients which is a more robust set of parameters. 
In matrix form, 
 
Ra = r                                                                                                  (3) 
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Where r is the autocorrelation vector,  a is the LPC vector and R is the Toeplitz matrix of r. 
The solution is: 
 
a = R

-1
r                                                                                                            (4) 

 
2.2 Cepstral Coefficients and Clustering 

The p Cepstral coefficients cm, for m=0,1…p-1 derived from the set of LPC coefficients using the 
LPC to Cepstral coefficient recursion[5]. 
 
K-means is one of the learning algorithms that solve the clustering problem . It is an algorithm to 
cluster n objects based on attributes into K partitions, where K < n. It attempts to find the centers 
of natural clusters in the data. It assumes that the object attributes form a vector space. The main 
idea is to define K centroids, one for each cluster. The result it tries to achieve is to minimize the 
total intra-cluster variance, or, the squared error function [6] 
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where there are K clusters Si , i = 1, 2, ….K, and µi is the centroid or mean point of all the points xj 
which will form the elements of  Si  and considered in the above computation. 
 
2.3 Forward-Backward Algorithm 

The Forward-Backward Algorithm is an algorithm for computing the probability of a particular 
observation sequence. Let the forward probability αj(t) for some model M with N states be defined 
as αj(t)=P(o1,…..,ot),x(t)=j|M ). That is, αj(t) is the joint probability of observing the first t vectors 
and being in state j at time t.  
 
This recursion is based on the fact that the probability of being in state j at time t and having 
observation ot can be found by adding the forward probabilities for all possible previous states i 
weighted by the transition probability aij . Also, 
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and P(O|M) equals αN(T).  
 
The backward probability βj(t) is defined as:  
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The forward probability is a joint probability and the backward probability is a conditional 
probability. Also, αj(t) βj(t)= P(O,x(t)=j|M). Hence the probability of state occupation becomes 
Sj(t)= P(x(t)=j|O,M) which in turn equals P(O, x(t)=j|M) ÷P(O|M). Let P(O|M)be denoted by Po. 
Then 
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2.4 H-Statistic 
Statistical indicators measure the significance of the difference between the performance of 
different systems and can be used to grade the systems if the performance difference is 
significant. Kruskal-wallis H-test is a non parametric test[7] of hypothesis whose test statistic can 
be effectively utilized in underwater signal classification. The H-statistic is given by: 
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where G is the total number of samples, Nj , j= 1,…G, is the size of sample  j , Rj , j = 1,…G, is the 
rank of the sample j . Let (Rj

2
/Nj) of the different sample sets be termed as C which forms an 

intermediate parameter in H estimation and  
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2.5 F-Statistic 
A F-test is a statistical test which is usually applied when comparing statistical models and is 
used to assess if the expected values of a quantitative variable within several pre-defined groups 
have difference among each other. The test statistic in an F-test is the ratio of two scaled sums of 
squares following Chi-squared distribution, indicating different sources of variability.  The F-test 
statistic is given as the ratio of ‘Between-Group variability’(BG) to ‘Within-Group variability’(WG). 
The two terms can be defined mathematically as follows: 
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where yiav denotes the sample mean in the i
th
 sample group, ni is the number of  observations in 

the i
th
 group and Yav denotes the overall mean of the data. Also  
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where Yij is the j
th
 observation in the i

th
 out of  Ng groups and N0 is the overall sample size. 

 
2.6 Median (M) and Sum of Ranks (R) 
The statistical estimate Median (M) is an important characteristic of signals from any underwater 
source. It is a measure of the skewness of the sampled signal distribution and also an indicator of 
the amplitude variations in the sample set of the particular signal. The Median of the signal can 
be estimated as that amplitude value in the sample set from which there occurs equal numbers of 
positive and negative amplitude deviations. The M parameter, along with H and F values helps in 
the classification of a particular signal. The other statistical estimate used along side H, F and M 
parameters in the proposed system is the Sum of Ranks ( R ). It gives a measure of the relative 
gradation of signal amplitude variations of the signal, taking into consideration, the sample 
location indices in the sample set of the underwater signal. The R parameter can be estimated for 
a sample set of by reordering the samples in the increasing order of amplitudes and replacing the 
original samples with their respective ranks, in the distribution. A minimum rank of unity can be 
assigned to a sample. For equal valued samples, average of the corresponding rank can be 
assigned. The sum of all the individual sample ranks will give the parameter R, which forms an 
important property, when utilized along with other parameters of the system. For the underwater 
signals with closely related H and F parameters, the R parameter can be helpful for identification 
in association with the M parameter.     
 

3. METHODOLOGY 

The methodology consists of various stages and the different steps involved in the extraction of 
feature vectors are furnished below. 
 
3.1 Cepstral Coefficient Extraction 
3.1.1 Sampling and Frame Conversion 

The noise data waveforms emanating from the underwater target of interest have been sampled 
and recorded as a wave file data, which is sampled to be converted to frames of Ns samples, with 
adjacent frames being separated by md samples[5]. Denoting the sampled signal by s[n], the l

th
 

frame of data by xl[n], and there are L frames, then  
 

][][ nlmsnx dl +=           (13) 
Where n = 0, 1, …., Ns -1, and l = 0, 1, ….L-1. 
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3.1.2 Windowing 
Each individual frame is windowed to minimize the signal discontinuities at the boundaries of 
each frame. If the window is defined as w[n], then the windowed signal xw is 
 

][][ nwnxx lw =          (14) 

 
where 0 < n < Ns-1. 
 
Hamming window is used as a typical window for the autocorrelation method of LPC. 
 
A frame based analysis of the noise data waveform has been performed to generate the sample 
vector, which can be used to estimate the statistics needed for target classification. The sampled 
signal is partitioned into frames of Ns samples, and consecutive frames are spaced md samples 
apart. Each frame is multiplied by a  Ns-sample Hamming window, and LP analysis is 
performed[8]. The Linear Prediction Coefficients are then converted to the required number of 
Cepstral coefficients, which are weighted by a raised sine window. 
 
3.2 Vector Quantization 

The next step in the system is  a clustering process which can be used to generate a code book 
which in turn is utilized in the estimation of transition probability vector.  The K-means algorithm 
has been used to fix the centroids of a cluster model. The extracted cepstral coefficients of the 
underwater signal source are being utilized as the data in this vector quantization process of 
unique cluster identification. A matrix is defined, which represents the data which is being 
clustered, in a concatenation of K clusters, with each row corresponding to a vector. The cluster 
centroids are generated as a vector with the cluster identity. The sum of square error function is 
used in the algorithm, and a log of the error values after each iteration can be returned in a 
variable. The maximum number of iterations can also be specified. 
 
3.3 Transition Probability Vector Generation 

A Vector of transition probabilities can be generated from the vector quantized output, for the 
estimation of the Decision Statistics. The algorithm for the generation of the transition probability 
vector is as follows: 
 
START: 

Segregate the data into Frames. 
Windowing the Frames using Hamming Window. 
Generation of Linear Prediction Coefficients. 
LPC to Cepstral Coefficient conversion. 
Vector Quantization and code book generation. 
Set Nit = maximum iterations 
 

LABEL 1: 
       While (count <= Nit)  
      { 
          Compute the forward probability αj(t) for all states j at times t. 
          Compute the backward probability βj(t). 
          If (P(O|M)<= value of previous iteration)  
           { 
             go to LABEL 2 
           } 
         Estimate Transition Probability Sj(t).  
         count = count + 1. 
       } 
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 LABEL 2: 
Generate a single column vector by concatenating individual columns of the estimated      
transition probability matrix. 

END 
 
3.4 Decision Statistics Estimation 

The H and F statistics are estimated as illustrated in Fig 1 with the three sample set consisting of 
the previously generated transition probability vector, a down sampled version of the original 
underwater signal and a predefined reference sample vector. A correction for ties can be made 
by dividing the H-statistic value by a Correction Factor(CF) defined as follows: 
 
 
                                                                                                                              (15)  
 
where g is the number of groupings of different tied ranks, and ti is the number of tied values 
within group i that are tied at a particular value. This correction usually makes only negligibly 
small change in the value of test statistic unless there are large numbers of ties. Additional 
statistical parameters like Median and Sum of Ranks can also be estimated along with, for the 
underwater signal being processed. 
 

 
FIGURE 1: Estimation of Decision Statistics 

 

4. IMPLEMENTATION 

The sampled underwater noise source is divided into frames of 400 samples (Ns). Consecutive 
frames are spaced 19 samples apart. Each frame is multiplied by an Ns-sample Hamming 
window. Because of lower side lobe levels, Hamming window is a good choice for comparatively 
accurate signal processing systems. Each windowed set of samples is auto correlated to give a 
set of coefficients. Then linear prediction coefficient analysis is done on the autocorrelation vector 
to estimate the LP coefficients and using recursion method, linear prediction coefficients are 
converted to cepstral coefficients. They are then weighted by a raised sine window function. By 
applying K-means algorithm, K centroids are defined, one for each cluster. Random selection of K 
vectors is done. K=16 is selected in the algorithm. The next step is to take each vector and 
associate it to the nearest centroid. At this    point, readjusting the centroids is done based on the 
new assignment. The algorithm minimizes the squared error   function mentioned earlier. Thus, 
vector quantization is carried out and unique clusters are defined for the particular underwater 
noise waveform.  
   
4.1 Sample Sets Under Consideration 
Using Forward-Backward re-estimation algorithm, the transition probabilities for the twenty states 
of the system model are estimated leading to the generation of the transition probability vector 
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which is considered as the first sample set. A vector of down sampled values of the underwater 
noise source with a down sampling factor of 0.5 forms the second sample set while a reference 
sample set of 1000 samples with sample values of 0.5 for the first 500 samples and 0.25 for the 
next 500 samples as depicted in Fig 2, forms the third sample set.   
 
The Kruskal-Wallis H-statistic is estimated with the correction factor to obtain the Chi-squared 
statistic approximation. The F-statistic approximation is also estimated for the system. The 
Median(M) of the underwater signal and Sum of Ranks(R), taking into consideration,  the three 
vectors, of the same underwater signal are also evaluated. The estimated values for the four 
parameters of different underwater noise sources possess divergent statistical properties which 
can be utilized in the effective identification and classification of the unknown underwater signal 
source under consideration. 
 

5. RESULTS AND DISCUSSIONS 

The system has been validated using simulation studies and the estimated H-statistic as well as 
F-statistic approximations, median values(M) and sum of ranks(R) of different underwater signal 
sources have been tabulated in Table 1. 

 
 
 

                        
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

TABLE 1: Underwater signal sources and their estimated values of H-statistic,                                                
F-statistic, Median and Sum of Ranks. 

 

Underwater 
signal source 

Estimated H-
Statistic 

Approximation 
value 

Estimated F-
Statistic 

Approximation 
value 

Estimated 
Median value(M) 

Estimated Sum 
of Ranks 
value(R) 

Shors 2090 3465 -0.0025 833927 

Toadfish 1798 2322 0.001975 1002781 

Beluga 2044 3242 -0.00158 908441 

Bagre 2420 5706 0.03316 1445904 

Outboard 1951 2791 0.00355 971748 

Damsel 2115 3616 0.0012571 827679 

Sculpin 1172 933 0.21805 1414338 

Atlantic croaker 1987 3023 -0.0004 862176 

Spiny 2450 6076 -0.005633 631137 

BlueGrunt 2097 3570 0.0003167 860600 

Dolphin 2146 3455 -0.00108 863228 

01m 1172 940 0.0772 1313128 

Barjack 2021 3050 0.00228 892434 

Bow1 2168 3939 -0.0049167 782094 

Boat 1494 1451 0.0024 1136117 

Chord 2160 3783 0.000625 778549 

3Blade 1837 2372 -0.004733 988073 

Torpedo 2563 9757 -0.007817 540386 

Rockhind 2075 3394 0.0013125 864103 

Snap1 2117 3632 -0.000483 823856 

Scad 1990 2893 0.0006667 869278 

Finwhale 2134 3875 -0.000453 793392 

Seal1 2051 3187 0.0241 1040226 

Garib 1896 2635 -0.049514 969721 

Grunt 1955 3259 0.00235 888618 

Ocean  Wave 2054 3558 -0.006425 844440 

Minke 2130 3476 0.0001 823722 

Hump 2156 3838 -0.010267 786830 

Seatrout 2051 3251 0.01018 934365 

Silverperch 2064 3193 0.0031 855612 

Cavitate 1877 2559 -0.007275 1004192 

Sklaxon 2141 3744 -0.00995 807558 

Submarine 1644 1843 -0.040775 1012841 

Badgear 2060 3453 -0.000217 852301 

Seacat 1731 2580 -0.003825 985634 

Searobin 1844 2394 -0.002425 962476 
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The Reference Sample Set of the type depicted in Fig 2, having a statistical variance of 0.0156 
has been considered in the proposed technique. Also, the Coefficient of Variation (CV) which is 
defined as the ratio of the Standard Deviation to modulus of Mean, for this reference sample set 
is seen to be 0.124.  

 
 
 

FIGURE 2: Plot of Reference Sample Set values used in the system. 
 
The (H, F, M, R) components form the recognition parameter for a given underwater signal 
source. The plots of the loglikelihood in transition probability estimation for the underwater noises 
of Toad Fish and Submarine are depicted in Fig 3 (a) and (b). The unknown underwater signal is 
processed and the extracted H,F,M,R components are assigned to  known underwater signal 
categories by judiciously matching the component parameters. The signals listed out in Table 1 
have been tested with the system, utilizing the (H,F,M,R) components and correct recognition has 
been obtained except for the Searobin and 3Blade underwater signals. The system possesses a 
tolerance specification of ±1% for the parameters used in this technique. 

 
 

 
 

(a)                                                                            (b) 
 

FIGURE 3: Plots of loglikelihood in Transition probability estimation for (a) Toad Fish (b) Submarine. 
 

The proposed system is optimized for the classification of underwater noise sources in the ocean. 
Non-parametric estimators and the featured statistical indicators possess increased robustness 
essential for the efficient classification capability of a system. State Transition Probability 
estimation has been utilized in the design of Hidden Markov Model based speech recognition 
systems [1][9]. In this underwater target classifying system, the transition probabilities form a 
significant sample set in the estimation of recognition parameters of a particular signal. The 
simulated results, using the four components, show high recognition capability of the system for 
underwater signals. The increased computational complexity of the system is offset by the 
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improved classification efficiency, while upholding the inherent advantages of non-parametric 
classifiers. 
 

6. CONCLUSIONS 
The proposed system makes use of statistical indicators along with non-parametric estimations 
like the cepstral coefficients for the identification and classification of underwater targets utilizing 
the target emanations. Using simulation studies, the H-statistic as well as F-statistic 
approximations along with the Median and Sum of Ranks parameters for different underwater 
signal sources have been estimated and are utilized for the identification of the unknown noise 
sources in the ocean. The system can also be augmented with other features and can be 
effectively used for the identification and classification of noise sources in the ocean, with 
improved success rates. 
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