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Abstract 

 
Improving the accuracy and reliability of the localization estimates and tracking of underwater 
targets is a constant quest in ocean surveillance operations. The localization estimates may vary 
owing to various noises and interferences such as sensor errors and environmental noises. Even 
though adaptive filters like the Kalman filter subdue these problems and yield dependable results, 
targets that undergo maneuvering can cause incomprehensible errors, unless suitable corrective 
measures are implemented. Simulation studies on improving the localization and tracking 
estimates for a stationary target as well as a moving target including the maneuvering situations 
are presented in this paper. 
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1. INTRODUCTION 

Underwater noise sources can be categorized mainly as natural and man-made, based on their 
source of origin.  Processing of the received acoustic signals helps in locating, tracking or even 
identification of the noise source. Localization and tracking of underwater targets bear lots of 
significance and has attracted great attention in the past few decades due to its importance in 
oceanographic, fisheries and military applications. One of the main requisites of surveillance 
operations is the precise position estimates of targets, which is implemented using certain 
geometrical constructions and well known algorithms on real time data from such systems.  
Various techniques for underwater localization and tracking have been devised, one of which 
utilizes the acoustic emanations from the targets in question by making use of passive listening 
concepts   [1-3]. 
 
Improving the localization and tracking estimates of targets using various techniques in an 
underwater scenario is a problem of unfathomable extent, owing to the characteristics of the 
ambient environment. As the localization estimates may vary due to sensor and environmental 
errors, Kalman filtering techniques are applied to obtain reliably accurate estimates of 
localization. The results of tracked targets can be mostly misleading, if enough measures for 
minimizing errors in every stage of the system are not employed. One of the major problems 
faced by underwater target tracking systems is the effects of noises of various forms, right from 
the ambient noises to system induced noises, which have to be dealt with for reliable results.  
Adaptive filters like the Kalman filter are very powerful tools to ward off the noises that affect the 
reliability of such a system [4, 5]. 
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Target tracking systems basically produce a stream of data related to the position of the target.  
This problem can be further divided into one dimensional motion of the target with inherent noises 
of different forms such as process noise and measurement noise. A study of one dimensional 
system is carried out and then extended to two dimensions, which can further be generalized to a 
multi-dimensional system depending on the nature of the problem.  
 
The observed errors in the case of a maneuvering target are far more complex in nature than the 
one in the case of a target which is moving with constant velocity and hence need to be mitigated 
by using suitable estimation techniques. The main cause of such errors in tracking targets is their 
stochastic maneuvering, which becomes difficult to be identified by the tracking device. This 
major issue is also associated with tracking of maneuvering targets with highly adaptive generic 
filters like the Kalman filter, since these filters end up producing an output, erroneously 
considering the measured values in response to the maneuvering target, as noise. Hence 
optimizing the performance of the Kalman filter in a maneuvering target scenario warrants certain 
modifications which are discussed in the final section of this paper.  
 

2. KALMAN FILTER 
Kalman filter is a recursive approximation algorithm that provides an efficient computational 
means to estimate the state of a dynamic system from a series of incomplete and erroneous 
measurements [6-9].  This filter supports estimation of past, present and even future states and it 
can do so even when the precise nature of the system is unknown. Unlike most of the data 
processing concepts, the Kalman filter does not require all the previous data to be stored and 
reprocessed for each new measurement which simplifies the practical implementation of the filter. 
This optimal linear estimator helps to refine the localization measurements and leads to more 
reliable position information by judiciously taking care of the variances in the measurements. 
 

2.1 System Model 
A Given a physical system, a mathematical model is developed that adequately represents some 
aspects of the behavior of the system, termed as system model. The structure and modes of 
responses of a system can be investigated using such mathematical models supplemented with 
appropriate mathematical tools. In order to observe actual system behavior, measurement 
devices are constructed to output data signals, proportional to certain variables of interest. These 
output signals and the known inputs to the system are the only information that is discernable 
about the system behavior [10, 11] 
 

The general problem of estimating the state variable x, of a discrete-time controlled random 
process, that is governed by the linear stochastic difference equation can be expressed as,  

kkkk+  +  +  = wBuAxx 1 ,        (1) 

with a measurement zk, that is 

  += kkk v Hxz           (2) 

 

The matrix  A in the difference equation relates the state x at the current time step k to the state x 

at the next time step k+1, in the absence of either an optional control function u   or process noise 

w. The matrix B relates the optional control input to the state, while the matrix H in the 
measurement equation relates the state to the measurement. The process is presumed to be 
stationary and hence the matrices are considered as constants. The normal probability 

distribution random variables wk and vk represent the process and measurement noise 
respectively and are assumed to be independent and white with constant covariance. 
 
2.2 Algorithm 
The Kalman filter is essentially a set of mathematical equations that implements a predictor-
corrector type estimator which minimizes the mean square error. The time update equations or 
the predictor equations are responsible for projecting forward the current state and error 
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covariance estimates to obtain the a priori estimates for the next time step. The measurement 
update equations or corrector equations are responsible for mapping the predicted values into the 
a priori estimate to obtain an improved a posteriori estimate.  

The following are the Predictor/corrected Kalman filter Equations. 

Predictor Equations:    

kkk + BuxAx ˆ = ˆ
1

−

+         (3) 
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x , above is the a priori state estimate at step k+1, which is the estimate of the state based on 

measurements at previous time-steps and  
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x  is the a posteriori state estimate at step k+1, 

given measurement zk+1. The a priori estimate error covariance is given by 
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and the a posteriori estimate error covariance by, Pk+1 = E [ek+1 ek+1
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],   where the a priori 

estimate error is 
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The matrix K is the Kalman gain or blending factor that minimizes the a posteriori error 

covariance. The difference (zk+1 - H
−

+1
ˆ

k
x ) is called the measurement innovation or the residual. 

The residual reflects the discrepancy between the predicted measurement and the actual 

measurement. A residual of zero means that the two are in perfect agreement. The Q and R 

values represent process and measurement noise covariance respectively.  
 

3. SCENARIO OVERVIEW 
Simulation of underwater target localization is carried out using an ocean surveillance system 
consists of sensor networks that has to be deployed in the ocean which compute location of the 
target by measuring angles to it, from known positions of the sensor nodes using passive 
listening concepts [12, 13]. The results of localization are applied to the Kalman filter so as to 
minimize the error leading to more accurate estimates of the localization information. This paper 
considers stationary target as well as moving target, represented in Cartesian co-ordinate system 
for analysis. Suitable transformations can be used if the measurement data are in a format other 
than the Cartesian system. However, the tracking system and design challenges are relatively 
insensitive to the choice of the co-ordinate system [14].  
 
A target moving with nearly constant velocity is characterized by a state vector with position and 
velocities as elements. The observations made can be assumed as a linear combination of the 
state vector corrupted by additive measurement noise. The Kalman gain is used to derive the 
filtered estimates of the state vector which in turn is used to compute the estimates predicted for 
the next measurement state. 

 
The residual value is the difference between the observed and predicted values. In addition to 
being used for updating the filtered estimates, the residual values can be checked for 
consistency. This consistency check can be used to adjust the filter parameters when large 
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residual values are interpreted as due to increased target dynamics or the detection of 
maneuvering of the target. The estimation accuracy provided by the Kalman filter through the 
covariance matrix is useful for detection of maneuver. Upon detecting such maneuver, the 
Kalman filter also provides an efficient way to adapt to a scenario of varying target dynamics [15-
17]. 

 
3.1 Improving localization Estimates of a Stationary Target  
The latitude longitude pair obtained from the localizer [12, 13] may not be accurate due to the 
variations in the estimation of direction of arrival of the signals emanating from the target and the 
mathematical approximations involved in the range computation.  These inaccuracies are 
resolved to a certain extent by applying the concepts of Kalman filter, making use of which the 
refinement of localization of the underwater target is carried out by reducing the mean square 
error.  Here the target is assumed to be stationary and the filter is applied in both dimensions 
independently in order to get more accurate position estimates. 

 
3.2 Tracking of a Moving Target 
In this model, the state vector consists of the target position and velocity. The elementary laws of 
motion can be applied for computing the velocity υ for an arbitrary time step k+1 and can be 

written as  kkk
+ Tu=υυ

1+  where u is acceleration and T is the time interval. This velocity will be 

perturbed by noise due to the wave action and other physical parameters of the ocean. Hence a 
more realistic equation for velocity υ  is 

 kkkk υ+ Tu=υυ
~

1 +
+         (8) 

where υ~   is the velocity noise. A similar equation for position s can be expressed as,  

kkkkk s+ u T+ Tυ=ss ~

2

1 2

1 +
+         (9) 

where s~  is the position noise.  

For an n dimensional system, the state vector at time step k, can be described as, 
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For a target moving in one dimension,    
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Since the measurement vector contains only the position element, the linear system equations 
can be represented as, 
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 [ ] kkk vxz += 01          (13) 

 

Process noise wk, represents the trajectory perturbations due to uncertainty in the target state 

whereas the measurement noise vk, represents the inability of the tracking device to precisely 
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measure the position of the target due to unavoidable errors in the measurement system. Both 

these noises are assumed to be random Gaussian processes. The acceleration u can be 
assumed to be zero without disturbing the generality of the system for a target moving with a 
constant velocity. 
 
When the target is moving in two dimensions with a constant velocity, the state, prediction and 
correction equations of the model are the same as that of the one dimensional scenario, except 
that all the vectors are of dimension 2. 
 
The true position of the target at the time k+1, given the position at time k is: 

kkk wAxx +=
+1          (14) 

The state vector at time step k , when n= 2 is, 
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 and the state transition model A is: 
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where I2 represents the identity matrix of order 2. 

 
The state vector keeps track of the positions of the target and velocities in different dimensions 
which usually are the X and Y dimensions. The purpose of the Kalman filter is to estimate the 
true state vector given a series of discrete measurements. The state transition model updates the 
state vector in each time step by updating each position by adding the time interval between each 
measurement multiplied by the velocity in the same dimension. 
 
Again, the measurement vector is a function of the state vector and a random noise process, 
expressed as,      

kkk vHxz +=          (17) 

where the measurement vector is:    


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
=

2

1

s

s
kz        (18) 

and the observation model H is:            [ ]0
2

I=H        (19) 

 

As the velocity is not measured directly, the observation model H  is operated on the state vector 
to obtain the measurement vector. 
 
3.3 Tracking of a Maneuvering Target 
The standard Kalman filter cannot be applied while considering a maneuvering target that 
executes a turn or an evasive action to elude the detection, since the target movement appears 
as an extensive process noise on the target model which cannot be circumvented by the process 
noise variance.  
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In order to detect a maneuver, the difference between each measurement and its corresponding 
predicted value is computed, which is called residual or innovation. When the number of 
components in each measurement is more than one, a normalized distance function or total 

distance, d
2
 is computed. This is done by squaring the differences in each of the component 

measurements, dividing by the respective error variances and then summed to form a total 
normalized distance. A generalized form of normalized distance function can be formed with the 

application of Kalman filter by using the residual vector 
k

z~  and the residual covariance matrix S,  

k

T

kk
d zSz ~~ 12 −

=          (20) 
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A maximum allowable value for the residual is set using the accuracy statistics of the prediction 
and measurement values and is normally set to at least thrice the residual standard deviation 
assuming zero mean Gaussian statistics, for one dimensional movement of the target. The 
computed differences are compared with the above derived maximum allowable error value and if 
the difference exceeds the same, a target maneuver is considered as detected.   
 
Since in the subject case, the target has two dimensions of physical freedom, the  normalized 
distance function is the sum of squares of two zero mean, unit standard deviation Gaussians, and 
thus  featuring  a chi-square probability distribution with degrees of freedom equal to the number 

of the measurement dimensions which in this case is 2. Based on this chi square table for d
2
, a 

threshold can be determined to detect the target maneuver [14, 16]. Once the maneuver is 
detected, the Kalman filter parameters are reset and the filter is reinitialized using the last 
two measurements 
 

4. SIMULATION 
The simulation of improving localization and tracking estimates using Kalman filter has been 
implemented using Matlab. The erroneous localizer output is considered in Cartesian coordinates 
and its latitude and longitude values are taken as X and Y dimensional values separately and 
filtered using Kalman filter for reducing the error in both the dimensions, for an assumed 
stationary target scenario. Distinct values for the latitude and longitude pair with an error 
distribution around zero and a deviation of one were simulated from the localizer output 

( 10
o
04′00″ E and 76

o
21′00″ N). The simulated erroneous values were fed to the Kalman filter 

for refinement of the estimates.  By iterating these values and minimizing the covariance, the 
Kalman filter eventually converges.  Measured values for the tracking scenario are also simulated 
from the localizer output by adding appropriate random functions. It is assumed that the target is 
moving in a straight line with constant velocity and when the corresponding measured values are 
loaded, the Kalman filter generates the corrected values.  
 
The algorithm implemented for the tracking of a maneuvering target is illustrated below, which 
detects the maneuvering of the target and upon detection it reinitializes the Kalman filter. For all 

scenarios the output figures vivify the effectiveness of the algorithm. 
 

4.1 Algorithm for Tracking of a Maneuvering Target 

Start 

LABEL :  Obtain position measurements  

Form state vector containing position and velocity 

Implement KF tracking algorithm on the state vector 

Compute the distance function 

Select a threshold from the chi-distribution table 

If threshold > distance, go to LABEL 
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Reset Kalman filter parameters 

Reinitialize the filter from previous iterations 

If surveillance active, go to LABEL 

Stop 

 
Using the chi-square distribution table, the value of the threshold, TH is taken as 10 which is 
equal to the value of the chi-square corresponding to a probability of 0.99, beyond which the 
target is detected to be under maneuvering. 

 

5. RESULTS AND DISCUSSIONS 
 
5.1 Improving localization Estimates of a Stationary Target 
In the case of a stationary target and when simulated with erroneous latitude data, the output of 
the Kalman filter is depicted in Figure. 1 where the erroneous data is generated by adding 

randomness to the latitude value 10
o
04′00″ from the localizer output. When the Kalman gain and 

the error covariance converge and remain stable, the output of the Kalman filter is considered to 
be reliable in the subsequent iterations. It can be seen that after 31st iteration the Kalman filter 
converges and generates the latitude value very close to the true value. The same algorithm is 
extended to the erroneous longitude values too, generating the corrected longitude value. 
  

 

FIGURE 1: Kalman Filter output for the latitude data  

    

A set of randomly fluctuating positional values indicated by ‘o’ markings, in Figure. 2, have been 
used for generating the corrected positional values by the Kalman filter. These values are 
simulated by adding random error to the assumed values of latitude and longitude data, viz., 
10

o
04′00″ and 76

o
21′00″ respectively. The estimated Kalman output comprise of the points marked 

with ‘.’ markings within the circled region in this figure. The filter converges and the estimated 
output of the Kalman filter is the position with latitude 10

o
03′59.6″ and longitude 76

o
21′0.2″ which is 

very close to the true value. 
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FIGURE 2: KF applied to the noisy measurements of a stationary target 
  

5.2 Tracking of a Moving Target 
In the second case analyzed herein, it is assumed that the target is moving in a straight line with 
a constant velocity. The true position of the target, the measured position and the estimated 
position in latitude and longitude dimensions are charted out in Figure. 3 and Figure. 4. The true 
positions and the estimated positions are almost close to be distinguished from one another after 
convergence of the Kalman filter while the ‘+’ marks are the measured positions. The fact that 
Kalman filter reduces the minimum mean square errors with elapsed time is clearly proven in the 
given plots. The initial predictions are not accurate as shown, but the filter adapts and converges 
after few iterations. 
 

 

FIGURE 3: True, measured and estimated positions in X dimension 
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FIGURE 4: True, measured and estimated positions in Y dimension 

 
In order to compare the accuracy of the estimates generated by the Kalman filter, Figure. 5 
depicts the error values between the true position and the measured position as well as between 
the true position and the estimated position as provided by the filter. It is clear from this plot that 
the positions that are estimated or predicted by the Kalman filter are much closer to the true 
positions almost at every data points. This plot also shows how the Kalman estimates improve 
over time.  
   

 
 

FIGURE 5: The residual plot of measurement and estimation with respect to the true values 

 
The relative accuracy of the Kalman output is demonstrated in Figure.  6, which shows the target 
velocity estimate which is a part of the state variable x, along with the position estimate. Here the 
estimated velocity is plotted, as the system does not provide any velocity data measurements. As 
seen from the plot, the velocity estimates are remarkably more stable in both the dimensions. 
Though the initial predictions are not accurate, the filter adapts and gets tuned to the variations 
and limits the error range after a few iterations. The readings reinforce the fact that the Kalman 



C. Prabha, Supriya M. H. & P. R. Saseendran Pillai 

Signal Processing: An International Journal (SPIJ), Volume (5) : Issue (5), 2011 10 

filter is a powerful approach and reduces the error considerably in both dimensions and also that 
the accuracy of the filter improves over time, as vivified in the 2D plot shown in Figure. 7. 
 

 
FIGURE 6: Velocity variation in X and Y dimensions 

  
 

 
FIGURE 7: Two dimensional tracking over time 

 
5.3 Tracking of a Maneuvering Target  
This case assumes the system model to be the same as that of the two dimensional scenario, but 
with the target presumed to be maneuvering twice.  Maneuver of the target is detected by 
comparing the distance function with the threshold determined by the chi square probability 
distribution. The threshold is set as 10 in this simulation, which corresponds to a probability of 
0.99 in the chi-square distribution function. Once maneuver is recognized, the Kalman filter 

parameters are reset and the filter is reinitialized using previous measurements. 
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FIGURE 8: True, measured and estimated positions of a maneuvering target 

 
As depicted in Figure. 8, the filter resets upon detecting a maneuver and thus it provides more 
accurate predictions over time. The position residual plot of the target maneuvering scenario 
depicted in Figure. 9 shows detection of the target maneuvers as graphical peaks at positions 63 
and 128, which closely correlates with the simulated maneuvers at the positions 60 and 125 
respectively.  The validity of chi-square test relies on the assumption that the process is Gaussian 
and independent, which is not necessarily valid in practice. Nevertheless chi-square tests are 
used in these situations because of its simplicity even though it is not necessarily optimal. Also 
the measurements expressed in Cartesian coordinates are not independent, but the effect of 
ignoring this fact is negligible in practice [14, 17]. 

 
FIGURE 9: Position residual graph showing the maneuvering points 

 

6. CONCLUSIONS  
Implementing Kalman filters to target tracking systems yield reliable results, given that the nature 
of the system can be modeled suitably. Applying such an adaptive filtering to a simulated 
stationary and moving system has yielded encouraging results, even when stochastic maneuvers 
were introduced on the target.  Various techniques that were implemented in the filter to 
circumvent the errors induced due to generic noises and the maneuvering of the target have been 
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studied.  The system can be extended to multiple dimensions of correlated parameters by 
appending desirable modifications in the system model. More reliable results can be obtained 
with the incorporation of other efficient techniques like neural networks and fuzzy logics. 
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