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Abstract 

 
In this paper a new thresholding based speech enhancement approach is presented, where the 
threshold is statistically determined by employing the Teager energy operation on the Wavelet Packet 
(WP) coefficients of noisy speech. The threshold thus obtained is applied on the WP coefficients of 
the noisy speech by using a hard thresholding function in order to obtain an enhanced speech. 
Detailed simulations are carried out in the presence of white, car, pink, and babble noises to evaluate 
the performance of the proposed method. Standard objective measures, spectrogram representations 
and subjective listening tests show that the proposed method outperforms the existing state-of-the-art 
thresholding based speech enhancement approaches for noisy speech from high to low levels of 
SNR.   
 
Keywords: Teager Energy Operator, Wavelet Packet Transform, Statistical Modeling, Thrsholding 
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1. INTRODUCTION 
Estimating a signal that is corrupted by additive noise has been of interest to many researchers for 
practical as well as theoretical reasons. The problem is to recover the original signal from the noisy 
data. We want the recovered signal to be as close as possible to the original signal, retaining most of 
its important properties. There has been an increasing interest in noisy speech enhancement in a 
broad range of speech communication applications, such as mobile telephony, speech coding and 
recognition, and hearing aid devices [1]-[5]. Since the presence of noise seriously degrades the 
performance of the systems in such applications, the efficacy of the systems operating in a noisy 
environment is highly dependent on the speech enhancement techniques employed therein. 
 
Various speech enhancement methods have been reported in the literature describing the know how 
to solve the problem of noise reduction in the speech enhancement methods. Speech enhancement 
methods can be generally divided into several categories based on their domains of operation, 
namely time domain, frequency domain and time-frequency domain. Time domain methods includes 
the subspace approach [6]-[10], frequency domain methods includes speech enhancement methods 
based on discrete cosine transform [11], the spectral subtraction [12]-[16]l, minimum mean square 
error (MMSE) estimator [17]-[21], Wiener filtering [22]-[25] and time frequency-domain methods 
involve the employment of thefamily of wavelet [26]-[34]. All the methods have their own advantages 
and drawbacks. In the subspace method [6]-[10], a mechanism to obtain a tradeoff between speech 
distortion and residual noise is proposed with the cost of a heavy computational load. Frequency 
domain methods, on the other hand, usually need less computation. In particular, although spectral 
subtraction method [12]-[16], is simple and provides a tradeoff between speech distortion and residual 
noise to some extent, it suffers from an artifact known as ”musical noise” having an unnatural 
structure that is perceptually annoying, composed of tones at random frequencies and has an 
increased variance. In the MMSE estimator [17]-[21], the frequency spectrum of the noisy speech is 
modified to reduce the noise from noisy speech in the frequency domain. A relatively large variance of 
spectral coefficients is the problem of such an estimator. While adapting filter gains of the MMSE 
estimator, spectral outliers may emerge, that is especially difficult to avoid under noisy conditions. 
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One of the major problems of wiener filter based methods [22]-[25] is the requirement of obtaining 
clean speech statistics necessary for their implementation. Both the MMSE and the Wiener estimators 
have a moderate computation load, but they offer no mechanism to control tradeoff between speech 
distortion and residual noise. Among the methods using time-frequency analyses, an approach of 
reducing different types of noise that corrupt the clean speech is the use of nonlinear techniques 
based on Discrete Wavelet Transform (DWT) [26]-[34], which is a superior alternative to the analyses 
based on Short Time Fourier Transform (STFT). The main challenge in such denoising approaches 
based on the thresholding of the wavelet coefficients of the noisy speech is the estimation of a 
threshold value that marks a difference between the wavelet coefficients of noise and that of clean 
speech. Then, by using the threshold, the designing of a thresholding scheme to minimize the effect 
of wavelet coefficients corresponding to the noise is another difficult task considering the fact that the 
conventional DWT based denoising approaches exhibit a satisfactory performance only at a relatively 
high signal-to-noise ratio (SNR). 
 
For zero-mean, normally distributed white noise, Donoho and Johnstone proposed Universal 
threshold based method [30] for denoising the corrupted speech. For noisy speech, applying a unique 
threshold for all the wavelet or WP coefficients irrespective of the speech and silence segments may 
suppress noise to some extent, but it may also remove unvoiced speech segments thus degrading 
the quality of the enhanced speech. Statistical modeling is another approach of thresholding [28], 
where the threshold of WP coefficients is determined using the similarity distances between the 
probability distributions of the signals. Since speech is not always present in the signal, the 
thresholding must be adapted over time so that it is larger during portions without speech and smaller 
for those with speech. This will eliminate as much of the noise as possible while still maintaining 
speech intelligibility. However, the method in [28] requires an estimate of noise variance to distinguish 
speech frames from that of the noise ones with a view to set different thresholds for them. In order to 
decide a time adaptive threshold considering speech or silence frame, some estimate of the signal 
energy over time is necessary. A popular technique to estimate the required energy of the signal is 
Teager Energy Operator [35]. In [29], Teager energy operator (TEO) proposed by Kaiser [35] is 
employed to compute a time-adaptive threshold (TAT) value to threshold the WP coefficients of the 
noisy speech. But, TAT method suffers from an over thresholding problem if the speech signal is just 
contaminated by slight noises as this method uses an absolute offset parameter to distinguish speech 
frames from that of the noise ones. 
 
In this paper, we develop a new thresholding method in the wavelet packet domain, where the 
threshold is adapted with respect to speech and silent segments. Since, TEO is a popular way to 
estimate the speech signal energy, instead of direct employment of the TEO on the noisy speech, we 
apply the TEO on the WP coefficients of the noisy speech. Unlike the approach of threshold 
determination directly from the WP coefficients of the noisy speech, we determine an appropriate 
threshold by performing the statistical modeling of the TE operated WP coefficients of noisy speech 
and employed a hard thresholding function for obtaining an enhanced speech.  
 

2. BRIEF BACKGROUND 

2.1. Wavelet Packet Transform  
A method based on the Wavelet Packet Transform is a generalization of the Wavelet Transform 
based decomposition process that offers a richer range of probabilities for the analysis of signals, 
namely speech. In wavelet analysis, a speech signal is split into sets of approximation and detail 
coefficients. The set of approximation coefficients is then itself split into a second-level approximation 
and detail coefficients, and the process is repeated. Mallat algorithm is one of the efficient ways to 
construct the discrete wavelet transform (DWT) by iterating a two-channel perfect reconstruction filter 
bank over the low pass scaling function branch. However, this algorithm results in a logarithmic 
frequency resolution, which does not work well for all the signals. In order to overcome the drawback 
as mentioned above, it is desirable to iterate the high pass wavelet branch of the Mallat algorithm tree 
as well as the low pass scaling function branch. Such a wavelet decomposition produced by these 
arbitrary subband trees is known as wavelet packet (WP) decomposition.  
 
In wavelet analysis, only scale space is decomposed, but wavelet space is not decomposed. By the 
restriction of Heisenberg’s uncertainty principle, the spatial resolution and spectral resolution of high 
frequency band become poor thus limiting the application of wavelet transform. In particular, there are 
some problems with the basic wavelet thresholding method, when it is applied to the noisy speech for 
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the purpose of enhancement. An important shortcoming is the shrinkage of the unvoiced segments of 
speech which contain many noise-like speech components leading to a degraded speech quality. On 
the other hand, in wavelet packet analysis, the wavelet space is also decomposed thus making the 
higher frequency band decomposition possible. Since, both the approximation and the detail 
coefficients are decomposed into two parts at each level of decomposition, a complete binary tree 
with superior frequency localization can be achieved. This particular feature of the WP transform is 
indeed useful for enhancing speech in the presence of noise.  

2.2. Teager Energy Operator  
The Teager Energy Operator (TEO) is a powerful nonlinear operator proposed by Kaiser [36], capable 
to extract the signal energy based on mechanical and physical considerations. The continuous form of 
the TEO is given as,  

 
 

(1) 
 
 

where,  and  represent the continuous TEO and a continuous signal, respectively. For a 
given bandlimited discrete signal , the discrete-time TEO can be approximated by,  
 

  (2) 
 

The discrete time TEO in (2) is nearly instantaneous since only three samples are required for the 
energy computation at each time instant. Due to this excellent time resolution, the output of a TEO 
provides us with the ability to capture the energy fluctuations and hence gives an estimate of the 
energy required to generate the signal. Note that, in case of speech signal, directly using the TEO on 
original speech may result in much undesired artifact and enhanced noises as TEO is a fixed-sized 
local operator.  
 
In context of the speech enhancement by thresholding via WP analysis, the threshold must be 
adapted over time, since speech is not always present in the signal. It is expected that the threshold 
should be larger during periods without speech and smaller for those with speech. In order to obtain 
an idea of speech/nonspeech activity for deciding the corresponding threshold value, it is required to 
estimate the signal energy over time. Since TEO is a popular way to estimate the speech signal 
energy, instead of direct employment of the TEO on the original speech, it is reasonable to apply the 
TEO on the WP coefficients. In comparison to the approach of threshold determination from the WP 
coefficients of noisy speech, the approach intended to determine threshold from the TE operated WP 
coefficients has the potential to eliminate as much of the noise as possible, while still maintaining 
speech intelligibility in enhanced speech. 
  

      
 

FIGURE 1:  Block Diagram of the Proposed Method 

3. PROPOSED METHOD 
The block diagram of our proposed system is shown in Fig. 1. It is seen from Fig. 1 that WP transform 
is first applied to each input speech frame. Then, the WP coefficients are subject to Teager Energy 
approximation with a view to determine a threshold value for performing thresholding operation in the 
WP domain. On thresholding, an enhanced speech frame is obtained via inverse wavelet packet 
(IWP) transform.  

3.1. Wavelet Packet Analysis  

For a  level WP transform, the noisy speech signal  with frame length  is decomposed into  
subbands. The -th WP coefficient of the -th subband is expressed as,  
 

  
(3) 
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where,  = 1, ..., /  and  = 1, ..., . Since the frequency resolution provided by the full WP 
transform is not sufficient to separate speeches from low-frequency noises, WP coefficients of the 
noisy speech have some noise handling limitations. To this end, we apply the discrete time TEO on 

the obtained WP coefficients, .  

3.2. Teager Energy (TE) Approximation  

The application of the discrete-time TEO on the  results in a set of TEO coefficients  . The -

th TEO coefficient corresponding to the -th subband of the WP is given by,  
 

  (4) 

i.e; using (2)  

  
(5) 
 

In comparison to the operation of WP transform on the noisy speech, the TEO operation on the WP 
coefficients of the noisy speech is able to enhance the discriminability of speech coefficients among 
those of noise. This energy tracking operator can be understood when considering sinusoidal 
oscillation that occur with a simple harmonic oscillator. If TEO is applied to a discrete time signal, it 

causes an effect as if a single sinusoid of amplitude  and frequency  is passed through three 
adjacent points with index  -1, ,  +1 thus yielding an output sequence that is a varying signal 
proportional to  , where the frequency  is normalized with respect to the sampling 
frequency. This signal in essence is a measure of the ‘energy’ in that signal as a function of time. It is 
thus important that the original discrete signal consist primarily of a single component. Since a 
wavelet coefficient stream in a single subband is primarily a single component signal, it is valid to 
apply TEO on the WP coefficients of the noisy speech.  

3.3. Statistical Modeling of TEO Operated WP Coefficients 
The outcome of a speech denoising method based on the thresholding in a transform domain 
depends mainly on two factors, namely the threshold value and the thresholding functions. The use of 
a unique threshold for all the WP subbands is not reasonable. As a crucial parameter, the threshold 
value in each subband is required to be adjusted very precisely so that it can prevent distortion in the 
enhanced speech as well as decrease annoying residual noise. In order to remove the noisy 
coefficients with low distortion in the enhanced speech signal, the value of threshold has to be 
different in the speech and silent frames. The value of the threshold in the silent frames is smaller 
than it in the speech frames. Also, the use of conventional thresholding functions, for example, Hard 
and Soft thresholding functions often results in time frequency discontinuities. In order to handle such 
problems, we propose a new thresholding function employing a threshold value determined for each 

subband of the WP by statistically modeling the TE operated WP coefficients  with a probability 

distribution rather than choosing a threshold value directly from the . This idea is also exploited to 

determine a threshold value for each subband of an silent frame which is different from that of each 
subband of a speech frame.  
 

The main issue in wavelet thresholding is estimating an appropriate threshold value . In the range of 

 and , the noisy speech wavelet coefficients are similar to the noise wavelet coefficients and 
outside of this range the wavelet coefficients of the noisy speech are similar to that of the clean 

speech [38]. So it is expected that in the range of  and , [30],[26],[37], the probability distribution 
of the noisy speech coefficients would to be nearly similar to that of the noise coefficients. 
Furthermore, the probability distribution of the noisy speech coefficients is expected to be similar to 
that of the clean speech coefficients outside of this range. In a certain range, the probability 

distribution of the  of the noisy speech is expected to be nearly similar to those of the noise. Also, 

outside that range, the probability distribution of the  of the noisy speech is expected to be similar 

to those of the clean speech. Thus by considering the probability distributions of the  of the noisy 

speech, noise and clean speech, a more accurate threshold value can be obtained using a suitable 
scheme of pattern matching or similarity measure between the probability distributions. Since speech 
is a time-varying signal, it is difficult to realize the actual probability distribution function (pdf) of 
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speech or its . As an alternative to formulate a pdf of the  of speech, we can easily formulate 

the histogram of the  and approximate the histogram by a reasonably close probability distribution 

function, namely Gaussian distribution [28]. In frequency domain, the use of a Gaussian statistical 
model is motivated by the central limit theorem since each Fourier expansion coefficient can be seen 
as a weighted sum of random variables resulting from the observed samples [39]. Other distributions 
were also proposed for the real and imaginary parts of the STFT coefficients [40], [24], the STSA 
coefficients [40], and the complex STFT coefficients [42], [17]. While it has been proposed that the 
Fourier expansion coefficients of speech signals may not be Gaussian-distributed, those assumptions 
are usually motivated by long-term averages of the speech signal which may not be applicable to 
specific short-time utterances. Moreover, many estimators using a Gaussian distribution do not have 
an analytical counterpart when using other distributions [41]. Therefore, many researchers consider 
only Gaussian distributed complex STFT coefficients in their works [43]. However, in our work, we 
have implemented our algorithm for 30 sentences of the NOIZEUS database and 4 different noise 
signals (white, car, pink, and babbler noises) and it is verified that, in each subband, the pdfs of the 

 of the noise, clean speech and noisy speech can be sufficiently well described by the Gaussian 

distribution. Fig. 2, Fig. 3, and Fig. 4 shows instances of these results for clean speech, noisy speech, 
and noise, respectively. 

3.4. Adaptive Threshold Calculation 
Analysis on the speech signal shows that, the value of entropy has the ability to detect speech/silence 

frames [38], [45]. Also, the entropy of each subband of the  is found different from each other. So, 

an entropy measure may be chosen to select a suitable threshold value adaptive to each subband as 
well as adaptive to the speech/silence frames. Some popular similarity measures that are related to 
the entropy functions are the Variational distance, the Bhattacharyya distance, the Harmonic mean, 
the Kullback Leibler(K-L) divergence, and the Symmetric K-L divergence [47]. All these measures are 
used to estimate the similarity between two pdfs. As all of these distance measures have nonnegative 
values, zero flag is a very suitable distinctive for recognizing the similarity between two pdfs. Note 
that, if two pdfs are exactly the same, only two measures (the K-L divergence and the symmetric K-L 
divergence) will be equal to zero. So, in order to determine an adaptive threshold value based on the 
idea of entropy quantified by an appropriate similarity measure, we proceed as follows,  

1. The average of the  of different segments is calculated.  

2. The histograms of the averaged  in each sub-band is obtained. The number of bins in the 

histogram has been set equal to the square root of the number of samples divided by two.  

3. Since  of clean speech, noisy speech and noise are positive quantity, there histograms in 

each sub-band can be approximated by the positive part of a pdf following the Gaussian 
distribution as shown in Fig. 2, 3 and 4. 
 

The K-L divergences is always nonnegative and zero if and only if the approximate Gaussian 

distribution functions of the  of noisy speech and that of the noise or the approximate Gaussian 

distribution functions of the  of the noisy speech and that of the clean speech are exactly the 

same. In order to have a symmetric distance between the any two approximate Gaussian distribution 
functions as mentioned above, the Symmetric K-L divergence has been adopted in this paper. The 
Symmetric K-L divergence is defined as,  
 

 
 

(6) 
 

where,  and  are the two approximate Gaussian pdfs calculated from the corresponding histograms 
each having  number of bins and  is the K-L divergence given by,  
 

 

 

(7) 

In (7),  represents the approximate Gaussian pdf of the  of the noisy speech estimated by,  

 

 
 

(8) 
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FIGURE 2: Probability distribution of TEO coefficients of clean speech 
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 FIGURE 3: Probability distribution of TEO coefficients of noisy speech 
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FIGURE 4: Probability distribution of TEO coefficients of noise 
. 

Similarly, the approximate Gaussian pdf of the  of the noise and that of the  of the clean 

speech can be estimated from (8) and denoted by  and , respectively. Below a certain 

value of threshold , the  of the noisy speech, the Symmetric K-L divergence between  and 

 is approximately zero, i.e,  

 

 
 

(9) 
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where the bins lie in the range [1, ] in both  and . Alternatively, above the value  of 

the  of the noisy speech, the Symmetric K-L divergence between  and  is closely 

zero, i.e,  

  (10) 

 

In (10), the bins lie in the range [ +1, M] in both  and . Using (6) and (7) in evaluating 

(9) and (10), we get,  

 

 

(11) 

 

 

 

(12) 

 

From (11), it is apparent that  of the noisy speech lying in the range [1, ] can be marked as  of 

noise and needed to be removed. Similarly, (12) attests that the  of the noisy speech residing 

outside  can be treated as similar to the  of the clean speech and considered to be preserved. 

For obtaining a general formula for the threshold value  in each subband, we use continuous real 
mode in (11) and (12), thus obtain,  
 

 
 

(13) 

 

 
 

     (14) 

where,  

                   (15) 
 

where, = /( + ,  [44], [46] and  are the variances of noise and clean speech in each 
subband, respectively.  For computing , we first simplify the equations (13) and (14) to solve. Since 
the symmetric K-L is a nonnegative distance, in a specified range, its minimum value can be found to 

be nearly zero. Thus the value of  for which the threshold reaches its optimum value can be 

determined by minimizing (13) or (14). It is well known that an optimum value of a function in a given 
range can be calculated by setting its derivative, with respect to the variable expected to optimize the 
function value, to zero. Since (13) is a definite integral, the derivative of the function defined in the left 

hand side (L.H.S) of (13) representing the Symmetric K-L divergence between  and  is 

zero. On the other hand, the derivative of the function obtained in the L.H.S of (14) representing the 

Symmetric K-L distance between  and  is calculated and set to zero. By simplifying the 

either derivatives, an optimum value of  can be obtained which is adaptive to each subband of a 
frame.  
 

   

 

(16) 

where,  is the variance of noise in each subband],  is the sub-band index and  is the segmental 
SNR calculated as,  
 
  (17) 

 
We calculate the second order derivation of the L.H.S of (14) with respect to the obtained threshold to 
demonstrate that the calculated threshold minimize (14). As the second order derivation of the L.H.S 
of (14) is nonnegative, the obtained thresholds are valid. In order to have smaller threshold for higher 
input SNR values, we have to adjust the threshold obtained by (16). Since the variance of the noise is 
inversely proportional to the input SNR, we can modify (16) as,  
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(18) 

Since in the silent segment of a noisy speech, only noise exists, a threshold value different than that 
used in the speech segment should be selected in order to eliminate the noise completely. The 

Symmetric K-L divergence between the of the noisy speech and that of the  of the noise is 

nearly zero in the non speech subbands. Exploiting this idea a suitable time adaptive threshold value 

 can be obtained as,  
 

 
 

(19) 

3.5. Denoising by Thresholding 
Removing noise components by thresholding operation of the WP coefficients is based on the fact 
that for many signals (such as speech), the energy is mostly concentrated in a low frequency region 
that corresponds to a small number of lower WP coefficients. So, by thresholding the WP coefficients, 
we can reduce the effect of the high frequency noise components on the speech signal components. 
We employ hard thresholding for denoising purpose.  
 
Hard thresholding sets zero to the noisy speech WP coefficients whose absolute value is below the 

threshold. Noting the threshold determined by (19) as  and using it, the hard thresholding 

function can be applied on the -th WP coefficients of the -th subband  as,  

 

 

 

(20) 

 

Here,  stands for the m-th WP coefficients of the k-th subband after the hard thresholding 

operation.  

3.6. Inverse Wavelet Transform 
The enhanced speech frame is synthesized by performing the inverse WP transformation WP

-1
 on the 

resulting thresholded WP coefficients ,  

  

         [n] =WP
-1

( )                 (21) 

 

where, [n] represents the enhanced speech frame. The final enhanced speech signal is 
reconstructed by using the standard overlap-and-add method.  

4. SIMULATION 
In this Section, a number of simulations is carried out to evaluate the performance of the proposed 
method.  

4.1. Simulation Conditions 
Real speech sentences from the NOIZEUS database are employed for the experiments, where the 
speech data is sampled at 8 KHz. To imitate a noisy environment, noise sequence is added to the 
clean speech samples at different signal to noise ratio (SNR) levels ranging from 15 dB to -15 dB. 
Four different types of noises, such as, white, car, and pink are adopted from the NOISEX92 [20] and 
NOIZEUS databases.  
 
In order to obtain overlapping analysis frames, hamming windowing operation is performed, where the 
size of each of the frame is 512 samples with 50% overlap between successive frames. A 3-level WP 
decomposition tree with db10 bases function is applied on the noisy speech frames and the Teager 
energy operation is performed on the resulting WP coefficients. By computing the threshold from (19), 
a hard thresholding function is developed and applied on the WP coefficients of the noisy speech 
using (20).  
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4.2. Comparison Metrics 
Standard Objective metrics [48], namely, overall SNR improvement in dB, Perceptual Evaluation of 
Speech Quality (PESQ) and Weighted Spectral Slope (WSS) are used for the evaluation of the 
proposed method. The proposed method is subjectively evaluated in terms of the spectrogram 
representations of the clean speech, noisy speech and enhanced speech. Informal listening tests are 
also carried out in order to find the analogy between the objective metrics and subjective sound 
quality. The performance of our method is compared with some of the existing thresholding based 
speech enhancement methods, such as, Universal [30], WTHSKL [29] and TAT [28] in both objective 
and subjective senses.  

4.3. Objective Evaluation 

4.3.1. Results on White Noise-corrupted Speech 
The results in terms of all the objective metrics, such as, SNR improvement in dB, PESQ and WSS 
obtained by using the Universal, WTHSKL, TAT, and proposed methods for white noise-corrupted 
speech are presented in Fig. 5 through Fig. 6 and in Table 1.  
 
Fig. 5 shows the SNR improvement in dB obtained by using different methods employing hard 
thresholding function in the presence of white noise, where the SNR varies from 15 dB to -15 dB . It is 
seen from this figure that in the SNR range under consideration, the improvement in SNR in dB is 
comparable for all the comparison methods, but they show comparatively lower values relative to the 
proposed methohd at all the levels of SNR.  
 
The PESQ scores vs SNR obtained by using different methods are portrayed in Fig. 6. This figure 
shows that the proposed method using the hard thresholding function is capable of producing 
enhanced speech with better quality as it gives larger scores of PESQ for a wide range of SNR levels 
whereas, the PESQ scores resulting from all other methods are comparable and relatively lower even 
at a high SNR of 15 dB. It is also seen from Fig. 6 that the difference in PESQ scores of the proposed 
method and that of the other methods increases as SNR decreases, thus indicating the effectiveness 
of the proposed method using hard thresholding function in enhancing speech even in a severe noisy 
environment.  
 
The WSS values obtained by using different methods are summarized in Table 1. for varying SNR of 
15 dB to -15 dB. For a particular method in Table 1, the WSS increases as SNR decreases. At a 
particular SNR, such as -15 dB, the proposed method using hard function is superior in a sense that it 
gives the lowest WSS value, whereas the other methods produce comparatively higher values of 
WSS.  

4.3.2. Results on Car Noise-corrupted Speech 
Now, we present the results in terms of all the objective metrics as mentioned above obtained by 
using the Universal, WTHSKL, TAT, and the proposed methods in Table 2 and in Fig. 7 through Fig. 8 
for car noise-corrupted speech.  
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FIGURE 5: Performance comparison of different methods using hard thresholding function in terms of 
SNR Improvement in dB for white noise corrupted speech. 

 

−15−10−5051015
0

0.5

1

1.5

2

2.5

3

3.5

4

SNR in dB

P
E

S
Q

 

 

Proposed Method (MHSS)

TAT algorithm

WTHSKL Method

Universal Threshold

 .  
FIGURE 6: Performance comparison of different methods using hard thresholding function in terms of 

PESQ for white noise corrupted speech. 
 

SNR [dB]  Universal  TAT  WTHSKL  Proposed Method  
15  34.84  27.2115  27.1  22.7  
10  42.1  34.5904  33.2337  29.1  
5  51.3  43.2807  42.7895  37.3  
0  62.5  55.1436  56.4079  46.82  
-5  73.13  67.1598  66.8581  59.1  
-10  90  85.43  86.1  78.1  
-15  100.6  100.63  92.77  84.8  

 
TABLE 1: Performane comparison of WSS for different methods in the presence of white noise. 

 
In Table 2, the performance of the proposed method using hard thresholding function is compared 
with that of the other methods at different levels of SNR. For a method in Table 2, the SNR 
improvement in dB increases as SNR decreases. At a low SNR of -15 dB, the proposed method 
yields the highest SNR improvement in dB. Such larger values of SNR improvement in dB at a low 
level of SNR attest the capability of the proposed method in producing the enhanced speech with 
better quality even for car noise-corrupted speech.   
 
 

SNR [dB]  Universal  TAT  WTHSKL  Proposed Method   
15  1.9  3.4  0.6  3  
10  3.8  4.01  2.9  4.51  
5  4.9  5  4  6.8  
0  6.7  5.7  5.5  8.1  
-5  7  7.23  8.1  9.14  
-10  8.9  9.6  9.2  10.78  
-15  10.1  10.63  11.6  12.7  

 
TABLE 2:  Performance comparison of SNR improvement in dB for different methods in the presence 

of car noise. 
 
In the presence of car noise, the PESQ scores at different SNR levels resulted by using the other 
methods are compared with respect to the proposed method employing hard thresholding function in 
Fig. 7. It can be seen from the figure that at a high level of SNR, such as 15 dB, Universal, WTHSKL 
and TAT methods show lower values of PESQ scores, whereas the PESQ score is much higher, as 
expected, for the proposed method. The proposed method also yields larger PESQ scores compared 
to that of the other methods at lower levels of SNR. Since, at a particular SNR, a higher PESQ score 
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indicates a better speech quality, the proposed method is indeed better in performance even in the 
presence of a car noise. 
  
Fig. 8 represents the WSS values as a function of SNR for the proposed method employing hard 
thresholding function and that for the other methods. As shown in the figure that the WSS values 
resulting from all other methods are comparable andrelatively larger for a wide range of SNR levels, 
whereas the proposed method is capable of producing enhanced speech with better quality as it gives 
lower values of WSS at a low SNR of -15 dB.  

−15−10−5051015
0

0.5

1

1.5

2

2.5

3

SNR in dB

P
E

S
Q

 

 

Proposed Method 

TAT Algorithm

WTHSKL Method

Universal Threshold

 .  

FIGURE 7: Performance comparison of different methods using hard thresholding function in terms 
PESQ scores for car noise corrupted speech. 
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FIGURE 8: Performance comparison of different methods using hard thresholding function in terms of 
WSS for car noise corrupted speech. 

4.3.3. Results on Pink Noise-corrupted Signal 
All the objective metrics for evaluating the performance of the proposed method relative to the other 
methods for pink noise-corrupted speech are computed and depicted in Fig. 9 through Fig. 10 and in 
Table 3.  
 
The SNR improvement in dB resulted by using different methods are summarized in Fig. 9. It is vivid 
from this figure that the other methods produce comparatively lower improvement in SNR in dB in the 
whole SNR range, while the proposed method using hard thresholding function continues to remain 
superior in a sense that it gives the highest improvement in SNR in dB even at an SNR as low as -15 
dB of pink noise.   
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.  

FIGURE 9: Performance comparison of the SNR Improvement in dB for different methods in the 
presence of pink noise. 

 
The PESQ scores of the proposed method and that obtained by using different comparison methods 
are shown in Table 3 with respect to SNR levels varying from high (15 dB) to low (-15 dB). It is clear 
from the table that the other methods continue to providelower PESQ scores, while the proposed 
method maintain comparatively higher PESQ scores even in the presence of severe pink noise of -15 
dB.  
 
The variation of the output WSS with respect to SNR levels for different methods and that for the 
proposed method using hard thresholding function is portrayed in Fig. 10. It is evident from analyzing 
each of these figures that, in the whole SNR range, the other methods continue to produce much 
higher WSS values with respect to the proposed method using hard thresholding function. Note that, 
the propose method performs the best in a sense that it yields the lowest WSS values almost at 
different SNR levels.  
 

SNR [dB]  Universal  TAT  WTHSKL  Proposed Method   
15  2.8  2.7  2.82  2.97  
10  2.53  2.52  2.5  2.71  
5  2.24  2.22  2.21  2.5  
0  2  1.9  1.87  2.1  
-5  1.55  1.65  1.67  1.9  

-10  1.4  1.47  1.52  1.7  
-15  1.3  1.39  1.43  1.5  

 
TABLE 3: Performance comparison of PESQ scores for different methods in the presence of pink 

noise. 
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FIGURE 10. Performance comparison of different methods using hard thresholding function in terms 
of WSS values for pink noise corrupted speech. 

4.3.4. Results on Multi-talker Babble Noise-corrupted Speech 
The results obtained from the multi-talker babble noise-corrupted speech in terms of the SNR 
improvement in dB, PESQ scores, and WSS values for the proposed method using hard thresholding 
function and that for the other methods are depicted in Fig. 11 through Fig. 13 at particular SNR levels 
of 15 dB, 0 dB and -15 dB. It is noticeable from these figures that the performance of all the methods 
degrades in the presence of multi-talker babble noise compared to that in the pink or car or white 
noise, but the proposed method retains its superiority with respect to all the levels of SNRs. 
  
Fig. 11 provides plot for the SNR improvement in dB for all the methods for babble noise-corrupted 
speech. It is seen that the proposed method maintains better performance at all the SNR levels 
considered. Also the proposed method still remains the best thus showing higher capability of 
producing enhanced speech with better quality at a very low level of SNR of 0 dB or even lower than 
that.  
 
In similar babble noisy condition, the PESQ scores resulting from using the speech enhancement 
methods under consideration are shown in Fig. 12. As seen, the proposed method continues to 
provide better results for the low levels of SNR , such as -15 dB.  
 
Also, the WSS values obtained from all the methods as a function of SNR are plotted in Fig. 13 for 
babble noise-corrupted speech. This figure illustrates that, as expected, the WSS values of the 
proposed method are somewhat increased in comparison to the other noisy cases, but its 
performance still remains better than that provided by the other methods for a wide range of SNR 
values from 15 dB to -15 dB.  
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FIGURE 11. Performance comparison of different methods using hard thresholding function in terms 
of SNR improvement in dB for babble noise corrupted speech. 
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FIGURE 12. Performance comparison of different methods using hard thresholding function in terms 
of PESQ scores for babble noise corrupted speech. 

.  

FIGURE 13. Performance comparison of different methods using hard thresholding function in terms 
of WSS values for babble noise corrupted speech. 

4.4. Subjective Evaluation 
In order to evaluate the subjective observation of the enhanced speech obtained by using the 
proposed method, spectrograms of the clean speech, the noisy speech, and the enhanced speech 
signals obtained by using all the methods are presented in Fig. 14 and 15 for white noise corrupted 
speech at an SNR of 5 dB and car noise corrupted speech at an SNR of -5 dB, respectively. It is 
evident from these figures that the harmonics are preserved and the amount of distortion is greatly 
reduced in the proposed method no matter the speech is corrupted by white or car noise regardless of 
its level. Thus, the spectrogram observations with lower distortion also validate our claim of better 
speech quality as obtained in our objective evaluations in terms of higher SNR improvement in dB, 
higher PESQ score and lower WSS in comparison to the other methods.  
 
Informal listening tests are also conducted, where the listeners are allowed and arranged to 
perceptually evaluate the clean speech, noisy speech, and the enhanced speech signals. It is found 
that the subjective sound quality of the proposed method possesthe highest correlation with the 
objective evaluation in comparison to that of the other methods in case of all the noises considered at 
different levels of SNR.  
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5. CONCLUSION 
An improved wavelet-based approach to solve the problems of speech enhancement using the 
Probability distribution of Teager Energy Operated wavelet Packet coefficients has been presented in 
this paper. We incorporated a statistical model-based technique with teager energy operator of the 
wavelet packet coefficients to obtain a suitable threshold using symmetric K-L divergence. For solving 
the equation of pdf’s, we choose Gaussian distribution as an acceptable pdf for noisy speech, clean 
speech and noise TEO coefficients in each sub-band. Unlike the unique threshold based method, the 
threshold value here is adapted based on the speech and silence segments. Then, by employing hard 
thresholding function the WP coefficients of the noisy speech are thresholded in order to obtain a 
cleaner speech. Simulation results show that the proposed method yields consistently better results in 
the sense of higher output SNR in dB, higher output PESQ, and lower WSS values than those of the 
existing thresholding based methods, hence results in a better enhanced speech than the existing 
thresholding methods.  
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FIGURE 14. Spectrogram of sp10.wav utterance by a male speaker from the NOIZEUS database: (a) 
Clean speech, (b) Noisy speech (white noise from NOISEX92 database of SNR 5 dB), (c), (d), (e), (f)-

enhanced speech signals obtained by using the Universal, TAT, WTHSKL, and the proposed 
methods, respectively. 
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FIGURE 15. Spectrogram of sp01.wav utterance by a male speaker from the NOIZEUS database: (a) 
Clean speech, (b) Noisy speech (car noise from NOIZEUS database of SNR -5 dB), (c), (d), (e), (f)-

enhanced speech signals obtained by using the Universal, TAT, WTHSKL, and the proposed 
methods, respectively. 
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