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Abstract 

 
Optimal finite linear-phase impulse response (FIR) filters are most often designed using the 
Remez algorithm, which computes so-called infinite precision filter coefficients. In many practical 
applications, it is necessary to represent these coefficients by a finite number of bits. The problem 
of finite wordlength linear-phase filters is not as trivial as it would seem. The simple rounding of 
coefficients computed by the Remez algorithm gives us a suboptimal filter. Optimal finite 
wordlength linear-phase FIR filters are usually designed using integer linear programming, which 
takes a lot of time to compute the coefficients. In this paper, we introduce a new approach to the 
design of finite wordlength FIR filters using very fast Babai's algorithm. Babai's algorithm solves 
the closest vector problem, and it uses the basis reduced by the LLL algorithm as an input. We 
have used algorithms which solve the problem in the L2 norm and then added heuristics that 
improve the results relative to the L∞ norm. The design method with Babai's algorithm and 
heuristics has been tested on filters with different sets of frequency-domain specifications. 
 
Keywords: FIR filter design, finite wordlength coefficients, Babai's algorithm, LLL algorithm, 
closest vector problem. 

 
 
1. INTRODUCTION 

The design of optimal finite wordlength finite impulse response (FIR) filters can be formulated as 
the Chebyshev approximation problem [1]. It is viewed as a criterion that the weighted 
approximation error between the desired and the actual frequency response is spread evenly 
accross the passband and stopband of the filter. This criterion minimizes the maximum absolute 
error. There exist very good approximation algorithms (including the well-known Remez 
algorithm), which give the optimal polynomial coefficients in the L∞ norm. Standard approximation 
algorithms yield unbounded or so-called "infinite precision" coefficients. In many practical 
situations, we want to use cheaper and faster fixed-point digital signal processors (DSPs). 
 
There are many approaches which yield the finite wordlength linear-phase coefficients, but not all 
are optimal. The most simple approach is to round coefficients calculated by the Remez algorithm 
to a desired length. However, this results in poor frequency response of the filter and suboptimal 
coefficients [2]. Kodek [2] proposes the use of the mixed integer linear programming (MILP) 
technique in the design of finite wordlength linear-phase FIR filters to give optimal coefficients. 
The slowness is the only disadvantage of this technique. An approach which significantly speeds 
up the calculation of coefficients is represented in [3]. By knowing the lower bound of 
approximation error, the number of subproblems can be reduced. This also reduces the amount 
of calculation. Derivation of an improved lower bound that uses the LLL algorithm is given in [4]. 
 
As was mentioned earlier, we can formulate the problem of optimal finite wordlength linear-phase 
FIR filter design as a polynomial approximation. The polynomial approximation has been solved 
with approaches based on the lattice theory algorithms, i.e. the LLL algorithm and Babai's nearest 
plane algorithm [5]. The LLL algorithm is a polynomial-time lattice reduction algorithm, named 
after its three authors. The formal description of the algorithm is in [6], and the implementation of 
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the algorithm, including the pseudo-code, can be found in [7]. The aim of the LLL algorithm is to 
reduce the lattice basis, so the new lattice is equally described with shorter and almost orthogonal 
vectors. The LLL algorithm has been successfully used in many areas, including practical 
applications such as cryptography, GPS navigation, and wireless communications. Babai's 
nearest plane algorithm solves the closest vector problem [8] and it uses the LLL reduced basis 
as the input. 

 
2. OPTIMAL FINITE WORDLENGTH LINEAR-PHASE FIR FILTERS 

The frequency response 1 of an optimal infinite precision linear-phase FIR digital filter of length  

is equal to 
  

        (1) 

,       (2)  

 

where  is a real function and  are the coefficients of the filter depending on filter length 

(odd or even) and filter symmetry (positive or negative). There are exactly four types of linear-

phase FIR filters. The upper limit  in the sum is  for type 1 filters,  for type 3 

filters, and  for type 2 and type 4 filters.   is defined as the filter length. We also define 

the desired frequency response  (which is defined to be unity in the passband and 

stopband of the filter) and a weighting function  (which allows us to choose the relative size 

of the approximation error in the passband and stopband of the filter). For mathematical 

convenience, a modified weighting function  and a modified desired frequency response are 

defined as 
 

        (3) 

         (4) 

 
The weighted approximation error is defined as 
 

  (5) 

 

To determine the filter cofficients , the following minimax approximation problem has to be 

solved 
 

    (6) 

 
The set  consists of the passbands and stopbands of the desired filter, e.g. . 

To make the finite wordlength constraint, the filter coefficients  are -bit integers from the set 

, where  

 

.       (7) 

 

The most significant bit of the coefficient represents the sign and the other  bits represent 

the magnitude. 
 
 

3. POLYNOMIAL APPROXIMATION AND FINITE WORDLENGTH LINEAR 
FIR FILTER DESIGN USING BABAI'S ALGORITHM AND HEURISTICS 

To represent an arbitrary non-trivial mathematical function on a computer, one usually uses its 

approximation. The approximation problem can be defined as a search for a function , which 

belongs to a given class of functions and is as close as possible to a function . Because there 
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exist efficient schemes of polynomial evaluation, the approximation function  usually belongs 

to a class of polynomials. 

The typical approximation problem is to search the polynomial  degree  which is 

sufficiently close to . The distance between functions is defined using the norm. The quality 

of the approximation is measured with the norm of the remainder  Different norms have 

different approximation functions. The most usual are the L2 and L∞ norms. If a continuous 

function  on an interval  is assumed, then the approximation problem can be defined as 

 
the L2 norm searching the , which minimizes 

 

      (8) 

 
the L∞ norm searching the , which minimizes 

  

     (9) 

 
The approximation polynomial can be a trigonometric polynomial. Finite wordlength FIR filter 
design can be formulated as the problem of approximation by sums of cosines. 

According to (5) and (6) the aim of the polynomial approximation is that the desired 

frequency response  and polynomial  are as close as possible. If  is represented 

as the vector  and  as the vector  

 

 and ,   (10) 

 

then we wish that vectors  and  are as close as possible according to the L∞ norm. Frequencies 

 represents equally discretized frequencies in the interval . The transition band 

is, unlike to the Remez design method, observed in the interval. If  is rewritten as vectors 

 

,   (11)  

 

then integer coefficients  that minimize 

 

     (12) 

 
have to be found. 
 Problem (11) can be formulated as the closest vector problem in the L∞ norm. Kannan's 
algorithm solves this problem in L∞, but its complexity is super-exponential [5]. In practice it is 
better to use Babai's algorithm, which solves the problem in the L2 norm, and then use some 
heuristics to improve the results relative to the L∞ norm. 

 Babai's algorithm returns the vector  as the result. In [5], heuristics similar to that used in 

this paper are described. The heuristics assume that the result in the L∞ norm is close to the 

result in the L2 norm. The heuristics search the neighborhood of the vector . Vectors which 

represent polynomial  (and are LLL-reduced) are added and subtracted from the vector . In 
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this manner, we get candidates for a result which is, according to the L∞ norm, better than the 
previous result. The L∞ norm is calculated between the candidates in the desired frequency 
response, and if the L∞ norm is lower than it was for the previous result than we keep the new 
result. This procedure is repeated until the result is improved. The heuristics are described with 
the pseudocode presented in Table 1. 
 

Description: Explore the neighborhood of the vector  to get close to the desired 

frequency response (vector ) according to the L∞ norm 

Input: vector , vector  LLL-reduced basis  

The vector  represents the frequency response of the filter and is according to the L2 

norm as close as possible to the desired frequency response of the filter. The vector  

represents the desired frequency response. The LLL-reduced basis  includes vectors 

. 

Output: vector . 

Set  is filled with  vectors:  

. 

Reference norm is calculated 

. 

For  to  calculate 

. 

If exists  such that 

, 

then new  and goto 2. 

 Else return . 

 
TABLE 1: Heuristics pseudocode 

 
The disadvantage of the finite wordlength linear-phase FIR filter design method described is that 
the weighting function  cannot be observed in the design process. 
 

4. RESULTS 
Our design method has been tested on 25 filters with five different sets of frequency-domain 
specifications. The frequency domain specifications are given in Table 2.  
 

Set Band 1 Band 2 Band 3 

A 
 

pass 

 

 
stop 

 

 

B 
 

pass 

 

 
stop 

 

 

C 
 

pass 

 

 
stop 

 

] 

pass 

 

D 
 

pass 

 

 
stop 

 

] 

pass 

 

E 
 

pass 

 

 
stop 

 

 

 
TABLE 2: Characteristics of filter test sets 
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Initially, filter A with 45 eight-bit coefficients was synthesized. As can be seen in Table 3, the 
design method with Babai's algorithm and heuristics did not give us the optimal filter, but the 
result was better than using rounding of coefficients calculated by the Remez algorithm. The 
calculation time of Babai's algorithm and heuristics was very short compared to the MILP method. 
The heuristics have also slightly improved the result of Babai's algorithm. Fig. 1 shows the 
magnitude response for the above filter designed using the MILP and Babai's algorithm with 
heuristics. 
 

 Rounding 
Babai's 

algorithm 

Babai's 
algorithm with 

heuristics MILP 

Max. deviation 0.037059 0.032884 0.032668 0.028847 

Passband 
deviation 

0.03125 0.029542 0.032668 0.028847 

 (0.267279 dB) (0.252882 dB) (0.279217 dB) (0.247016 dB) 

Stopband 
deviation 

0.037059 0.032884 0.031262 0.027691 

 (28.622046 dB) (29.660432 dB) (30.099566 dB) (31.153227 dB) 

Calculation time 0.064 s 0.192 s 0.210 s 44.431 s 

 
TABLE 3: Results for filter A, 45 eight-bit coefficients 

 
 

 
 

FIGURE 1: Magnitude response for filter from set A (length 45, 8-bit coefficients) 

 
The non-unit weighting function could not be used in the design process. When designing filters 
from sets B and D, the magnitude response from the Remez algorithm was approximated. In 
these cases, the results were not very good. In all other cases, results were better than using the 
simple rounding technique, and in some cases optimal filter coefficients were calculated. The 
results can be seen in Table 4. 
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Set   Rounding Babai's algorithm with heuristics MILP 

A M=25, b=7 max. deviation 0.078125 0.065237 0.065237 

 M=35, b=8 max. deviation 0.032668 0.032668 0.029966 

 M=45, b=8 max. deviation 0.037059 0.032668 0.028847 

 M=45, b=10 max. deviation 0.013872 0.010182 0.010182 

 M=55, b=10 max. deviation 0.00979 0.009144 0.008296 

B M=25, b=8 passband deviation 0.140625 0.143501 0.154246 

  stopband deviation 0.032914 0.039063 0.015234 

 M=35, b=9 passband deviation 0.074219 0.066406 0.073276 

  stopband deviation 0.015902 0.022931 0.007313 

 M=45, b=9 passband deviation 0.03801 0.034366 0.052641 

  stopband deviation 0.011719 0.015908 0.005681 

 M=45, b=11 passband deviation 0.024179 0.025522 0.026655 

  stopband deviation 0.006177 0.006282 0.002673 

 M=55, b=11 passband deviation 0.010579 0.011861 0.01666 

  stopband deviation 0.006234 0.004939 0.001643 

C M=25, b=7 max. deviation 0.041507 0.036676 0.036676 

 M=35, b=8 max. deviation 0.046875 0.03125 0.016767 

 M=45, b=8 max. deviation 0.030466 0.029409 0.016085 

 M=45, b=10 max. deviation 0.00993 0.006843 0.004761 

 M=55, b=10 max. deviation 0.010839 0.007636 0.004365 

D M=25, b=8 passband 1 deviation 0.0625 0.0625 0.078125 

  stopband deviation 0.014408 0.014408 0.007966 

  passband 2 deviation 0.0625 0.0625 0.078125 

 M=35, b=9 passband 1 deviation 0.015987 0.023438 0.03125 

  stopband deviation 0.012202 0.011957 0.003302 

  passband 2 deviation 0.027344 0.023438 0.03125 

 M=45, b=9 passband 1 deviation 0.01768 0.014144 0.022836 

  stopband deviation 0.010906 0.011689 0.002552 

  passband 2 deviation 0.018901 0.011097 0.025071 

 M=45, b=11 passband 1 deviation 0.004244 0.003761 0.006396 

  stopband deviation 0.003222 0.002954 0.000745 

  passband 2 deviation 0.003906 0.004551 0.005306 

 M=55, b=11 passband 1 deviation 0.002167 0.002167 0.00518 

  stopband deviation 0.00371 0.00371 0.000618 

  passband 2 deviation 0.004379 0.004379 0.005859 

E M=25, b=7 max. deviation 0.077633 0.062141 0.06071 

 M=35, b=8 max. deviation 0.046934 0.033004 0.032888 

 M=45, b=8 max. deviation 0.035784 0.035784 0.028987 

 M=45, b=10 max. deviation 0.015263 0.011185 0.010104 

 M=55, b=10 max. deviation 0.011802 0.009119 0.008199 

 
TABLE 4: Results 

 

 

5. CONCLUSION 
A new method using Babai's algorithm and heuristics for the design of finite wordlength linear-
phase FIR filters was presented in this paper. Heuristics were used to improve the Babai's 
algorithm result and to bring the result closer to the L∞ norm. Testing showed that the heuristics 
improve the result of Babai's algorithm. The major advantage of this design method is the speed 
of the algorithm. Major disadvantages are that we do not get always the optimal filter coefficients 
and we cannot design filters with non-unit weighting functions. These will be the main focus of our 
future research, and our aim is to minimize those disadvantages. 
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 Our future research will also attempt to include some other concepts. The problem of 
searching the closest point in a lattice is in communications community referred as the sphere 
decoding. Using results of [9], [10] some of the improvements over the Babai's algorithm could be 
reached. In [11], [12] the peak constrained least squares method is introduced. This method 
balances the minimax and the squared error criteria. This approach could be useful framework to 
pose the filter design problem. 
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