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Abstract 
 
Microelectrode arrays (MEAs) have been applied for in vivo and in vitro recording and stimulation 
of electrogenic cells, namely neurons and cardiac myocytes, for almost four decades. 
Extracellular recordings using the MEA technique inflict minimum adverse effects on cells and 
enable long term applications such as implants in brain or heart tissue.  
 
Hence, MEAs pose a powerful tool for studying the processes of learning and memory, 
investigating the pharmacological impacts of drugs and the fundamentals of the basic electrical 
interface between novel electrode materials and biological tissue. Yet in order to study the areas 
mentioned above, powerful signal processing and data analysis tools are necessary. 
 
In this paper a novel toolbox for the offline analysis of cell signals is presented that allows a 
variety of parameters to be detected and analyzed. We developed an intuitive graphical user 
interface (GUI) that enables users to perform high quality data analysis. The presented 
MATLAB® based toolbox gives the opportunity to examine a multitude of parameters, such as 
spike and neural burst timestamps, network bursts, as well as heart beat frequency and signal 
propagation for cardiomyocytes, signal-to-noise ratio and many more. Additionally a spike-sorting 
tool is included, offering a powerful tool for cases of multiple cell recordings on a single 
microelectrode.  
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For stimulation purposes, artifacts caused by the stimulation signal can be removed from the 
recording, allowing the detection of field potentials as early as 5 ms after the stimulation. 
 
Keywords: MATLAB® Toolbox, Bio Signal Processing, Spike Sorting, Network Analysis, 
Extracellular Recording.

 
 
1. INTRODUCTION 
For all neural or cardiac implants, cell activity is detected by extracellular electrodes in the form of 
field potentials. Since cortical implants might be used someday to control artificial limbs, 
wheelchairs or software [1, 2], improving the living conditions of disabled people, the field of 
neural signal processing is of utmost importance. 
 
Yet signal processing is not only essential for in vivo applications such as implants, but also for in 
vitro studies of neural as well as cardiac networks that require substantial amounts of data 
processing. These systems are a powerful tool for studying learning, memory [3] and 
pharmacologic mechanisms [4]. In addition, the properties of the interface between novel 
electrode materials and biological tissue can be investigated [5], especially as there has been a 
growing community utilizing different kinds of multi-electrode arrays for in vivo and in vitro 
experiments in the recent past. Although the MEAs being used may differ in electrode size, 
substrate and electrode material as well as in number of electrodes, they all share the same 
working principles: (1) extracellular microelectrodes do not penetrate the cell membrane. (2) They 
record field potentials in the vicinity of the cell caused by changes in membrane potential – so 
called action potentials (AP). (3) The cells are either cultured onto the electrode array for in vitro 
studies or the chip is implanted into living tissue for in vivo studies. (4) These electrodes can be 
used to stimulate cells through voltage or current pulses. 
 
There are a couple of software toolboxes for neuronal signal processing available, where only a 
few are specifically designed for extracellular signals recorded by microelectrode arrays. These 
toolboxes include the commercially available MC_Rack (multichannel systems, Reutlingen, 
Germany), NeuroExplorer (Nex Technologies, Littleton, MA, USA), Offline Sorter (Plexon, Dallas, 
TX, USA) or NeuroMAX (R.C. Electronics Inc, Santa Barbara, CA, USA) and, furthermore, the 
open source projects FIND [6] sigTool [7] or nStat [8] to name only a few. Most of these toolboxes 
focus on neural signal processing exclusively, whereas cardio tools have not received as much 
attention. This motivated us to develop an open toolbox including established as well as new 
algorithms like a novel spike sorting algorithm that enable analysis of a variety of parameters for 
neural and cardiac cell signals. 
 
In the following we introduce an offline signal processing toolbox with algorithms for spike and 
burst detection, a sophisticated algorithm for spike sorting, spike overlay and signal propagation 
for cardiac cells and furthermore an analysis of simultaneous neural network activity. 
 
There are several cells that can change their resting potential e.g. neurons and cardiac myocytes. 
Throughout this paper we use the term spike to describe such a voltage peak no matter which 
cell caused it. Since the software tool reported herein is capable of working with any kind of spike 
we do not distinguish between different kinds of cell signals. 
 
This multi domain approach combined with powerful tools for neural and cardiac signals is unique 
in the field of offline analysis of electrophysiological data.  
 
The GUI, provides researchers an easy to use platform to process their signals and test new, 
custom made algorithms. A flow chart of available processing steps is shown in Figure 1. 
Generally the algorithms are designed for microelectrode arrays with 60 electrodes, yet signals 
originating from other set ups such as needle arrays or arrays with a different number of working 
electrodes can be processed as well. 
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The software is distributed under the GNU general public license (GPL) version 3 and is available 
from the authors at www.h-ab.de/drcell. It is based on MATLAB® R2012a including the Curve 
Fitting, Image Processing, Signal Processing, Statistics and Wavelet toolboxes. 
 
 

 
 

FIGURE 1: Flow chart of possible processing steps in the “DrCell” software toolbox. 

 
To test the developed algorithms cell culture experiments were conducted. Data recording was 
done using a multichannel system amplifier stage combined with custom made LabVIEW 

TM
 

based software. Details about cardiac cell cultures can be found in [5] Details about neural cell 
cultures in [9]. In short, cortical rat neurons were purchased cry conserved from Lonza Ltd (Lonza 
Ltd, Basel, Switzerland). Before cultivation, microelectrode arrays were coated with Poly-D-Lysine 
(PDL, 0,1 mg/ml in phosphate buffered saline (PBS), Sigma-Aldrich Chemie GmbH, Taufkirchen, 
Germany) and Laminin (15 μg/ml in PBS, Sigma-Aldrich Chemie GmbH). Spikes were recorded 
from day 14 in vitro. 
 
Cardiac myocytes were prepared from chick embryos (E8). Hearts were carefully removed, the 
tissue dissociated and the cells cultured onto the MEAs. Here the chips were coated with 
Fibronectin (10 μg/ml in PBS,Sigma-Aldrich Chemie GmbH) prior to cultivation. 

 
2. RESULTS AND DISCUSSION 

The software tool named “DrCell” is subdivided into general preprocessing tools and a specific 
module for cardiomyocytes as well as a module designed for neural signal processing and 
analysis. While the cardiac module includes algorithms to analyze the contraction rate of the 
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tissue and signal propagation across the electrode array, the neural module features algorithms 
developed to analyze bursts and network behavior. 
 
2.1 Preprocessing 
In order to enable or just improve the detectability of signal parameters, it is advantageous to 
apply preprocessing algorithms to the recorded data. This includes digital filtering, spike detection 
and spike sorting for neuronal signals as well as the removal of stimulation artifacts in the case of 
an electrical stimulation. 
 
The graphical user interface of the MATLAB® software tool allows loading of ASCII files, 
containing recorded data, into the workspace for further processing. If the data is not recorded in 
ASCII file format it must first be converted using freely available tools such as the MC_DataTool 
from multichannel systems. 
 
In a first step the signal can be filtered by a bandstop or a bandpass filter. The frequencies for the 
lower and upper stopband edge frequencies can be set manually by the user. If both values are 
identical a notch filter with 1 dB passband ripple is applied at the chosen frequency. For the 
bandfilter an IIR Chebyshev filter with 20 dB stop band attenuation and ripple in the stopband is 
used.  
 
In addition, noisy electrodes can be omitted completely and stimulation artifacts can be removed 
as described in detail later. The next processing steps include the calculation of thresholds, spike 
and burst detection as well as several post processing tools such as spike sorting, analysis of 
network bursts, correlation analysis and spike shape analysis. 
 
2.2 Spike Detection 
The overall quality of the data analysis depends on the reliability of spike detection. Only if spikes 
are detected correctly, bursts, simultaneous bursts (bursts that appear over multiple electrodes at 
the same time), interspike intervals, or shapes of spikes can be detected and analyzed correctly. 
Out of a broad variety of spike detection methods, the first reported and still widely applied 
algorithm uses a negative multiple of the root mean square (rms), or alternately of the standard 
deviation of the base noise, as threshold. If the signal voltage drops below this value, a spike is 
detected [10]. Variations of this very easy, fast and reliable algorithm are also available e.g. 
multiple thresholds [11] or in combination with additional pattern recognition algorithms [12]. 
 
The spike detection algorithm implemented in DrCell works in four steps, which are summarized 
here and explained in detail below: (1) A time frame of two seconds on each electrode containing 
exclusively noise is detected. (2) For this frame the root mean square (rms) value and the 
standard deviation are calculated and (3) multiplied with a negative factor. As default value a 
multiple of the rms is used as threshold; alternatively a multiple of the standard deviation can be 
chosen instead. (4) The absolute minimum of every voltage peak that is lower than the threshold 
is saved as the spike’s timestamp. 
 
(1) To detect the base noise level, a time window is shifted over the signal of each channel 
searching for spike-free periods. The size of the window is set to 50 ms as default value but can 
be adjusted by the user. The detection of spike free windows is achieved by fitting the signal 
histogram with a Gaussian distribution, typical for white noise. A low standard deviation (equal or 
lower than a value defined by the user and set as default to ≤ 5) from this Gaussian distribution is 
interpreted as pure, spike-free noise. In this case the noise data is saved in a separate array and 
the window is shifted forward by one window length. If the standard deviation is higher than the 
defined value spikes are likely to be present in that particular interval and the window is only 
shifted half the window length and conditions are checked again. This process is repeated until a 
time period of 2 seconds is identified as “spike-free”. Sometimes the signal-to-noise ratio is too 
low for any signal to be detected. If half of the total recording time has been swept and no spike-
free window has been found, the algorithm stops and this particular electrode is labeled “noisy”, 
hence being disregarded for any further analysis. 



Christoph Nick, Michael Goldhammer, Robert Bestel, Frederik Steger, Andreas W. Daus & Christiane Thielemann 

Signal Processing: An International Journal (SPIJ), Volume (7) : Issue (2) : 2013 100 

 
As an option, the user can also define the timeframe to be used for calculating the rms value or 
standard deviation of the noise manually.  
 
(2-3) The rms value or, respectively, the standard deviation of these spike free signal arrays is 
multiplied by an empiric factor of -6 (default value) to set the threshold. This factor can also be set 
manually in the range of -3 to -14. 
 
In addition, a refractory time between spikes can be defined, if whished by the user. In this case 
the algorithm works as defined above but, after saving all timestamps, the intervals between the 
spikes are checked for physiological plausibility and, if this is not given, the second spike is 
erased from the array. 
 
The signal-to-noise ratio (SNR) of biological signals is not easily determined. In general the SNR 
is defined as the signal-power divided by the noise-power. Since only field potentials are 
measured, in other words voltage signals, there is no information on the respective power. 
Therefore we define the SNR of each electrode as SNR = (vps/σn)

2
, while vps describes the 

average peak voltage of spikes and σn the standard deviation of the noise [5]. By assuming the 
same impedance for signal and noise amplitudes the power ratio is calculated by squaring the 
fractal expression. 
 
This algorithm provides a very reliable and fast method for spike detection and is also easily 
implementable for online analysis. 
 
 
2.3 Stimulation Artifact Removal 
If cells are stimulated by electrical impulses supplied by a current or a voltage source [3], cell 
responses may be superimposed by undesirable distortions. Here we distinguish between 
crosstalk originating from the stimulation signal itself (about -18 ms to 0 ms in Fig. 3) and artifacts 
that appear shortly after the stimulation (about 0 ms until 80 ms in Fig. 3). Typically, cell reactions 
to the stimulation are expected within the first few milliseconds after the end of stimulation, while 
artifacts last up to 100 ms; therefore the removal of artifacts is desirable [13]. There are several 
approaches to achieve cancellation of artifacts described in the literature: the separation of 
stimulation and recording electrodes [14], the application of sample and hold elements [15], pass 
filters [16] or algorithms to restore the disturbed signal [13, 17]. 
 
The algorithm implemented in the DrCell toolbox reduces the critical time after a stimulus from 
about 100 ms to below 10 ms. For this purpose the beginning and end of the stimulation period is 
detected by a threshold based algorithm. The artifact signal is fitted by two consecutive 9th order 
polynomials, one for the period between 0.5 and 7.5 ms and one for 7.5 to 82.5 ms after 
stimulation. Subtraction of these polynomials from the recorded signal reduces distortions 
significantly (see Figure 2). In case the first couple of milliseconds (1 - 5 ms) are severely 
distorted, this time interval may be completely removed (set to 0 V), just as the stimulation 
interference itself. 
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FIGURE 2: Effect of artifact removal. Stimulation crosstalk (-18 ms to 0 ms) and artifacts (about 0 ms until 

80 ms) are removed from the distorted original signal (black) resulting in an adjusted signal (blue). This step 
clearly facilitates the spike detection immediately after stimulation. 

 
According to Ruaro [16] applying ninth order polynomials will result in robust artifact removal, 
while higher order polynomials would unnecessarily increase the computation cost. The 
application of polynomials of lesser order can still result in corrupted artifact removal.  
 
Cardiac Module 
2.4 Beat Rate 
Regular and synchronous contraction is a key feature of cardiac tissue. Pacemaker cells have the 
ability to initiate action potentials that propagate via gap junctions within a functional syncytium. In 
cardiac myocytes cultured on MEAs, the contraction rate correlates over time with the intrinsic 
field potentials and thus can be analyzed in terms of beat rate or for possible arrhythmias [18]. In 
our experiments, the former is calculated by the reciprocal median of the Interspike intervals 
(ISIs). The regularity is estimated using the median absolute deviation (MAD) of reciprocal ISIs 
[19]. 
 
2.5 Spike Shape and Propagation 
Typically the course of field potentials can be divided into several phases identified by negative or 
positive peaks, respectively. Applying chemical or electrical stimuli to the cells, as well as the 
effects of aging may influence several characteristics of the spike shape, e.g. the general field 
action potential duration, amplitude or the repolarization time. Therefore some domains might be 
prolonged or reduced and might occur either delayed or prematurely, respectively, whereas some 
characteristics of spike shape may become less distinctive or may even disappear. 
 
In cultures of cardiac tissue, the signal generated by pacemaker cells spreads throughout the 
whole network. As a consequence it is interesting to investigate the origin, direction and 
propagation speed of the specific signal. For this purpose an algorithm is implemented that maps 
almost synchronous spikes in a false color map by applying a time scale in the two dimensions of 
the electrode array (Figure 3 top). Noisy electrodes without discernible spikes or electrodes 
manually omitted from the analysis are highlighted in black. To further facilitate propagation 
pathway identification, arrows may be superimposed indicating propagation direction and speed 
(length of the arrows), not shown. 
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FIGURE 3: Propagation and spike overlay. The propagation of one heartbeat over the electrode array is 
shown (top). A spike overlay is displayed, where two different spike forms can clearly be distinguished 

(bottom). 
 

The propagation algorithm is based on the detection of the first spike appearing on the MEA. 
Delayed spikes within the next 200 ms are identified and their retard and electrode position are 
used to calculate speed and propagation pathways which are visualized on a virtual MEA layout. 
 
To address the issue of varying spike shapes, the DrCell algorithm determines characteristic 
peaks of each spike and the interval between these peaks. In addition, these data are not only 
calculated for just one spike, but may either be assessed for all spikes recorded by a single 
electrode or as mean values of the spikes recorded by all electrodes, further including information 
about their standard deviation and median. A graphic panel depicts an overlay of all spikes 
recorded on a single electrode (Figure 3 bottom), allowing an easy assessment of continued 
conformity of the spike shapes. The algorithm uses detected spikes and displays a time frame 
[spike time - x; spike time + y] of each selected spike. 
 
This panel proves especially valuable when working with cardiac tissues, as comparison of the 
duration of the field action potentials presents a valid method to evaluate the risk of diverse heart 
diseases. Of course, observation of single spikes is an option as well. In this case, the user may 
switch from one recorded spike to the next receiving single spike data, also allowing manual 
query of time points during the measurement. 
 
With these tools at hand the electrophysiological effects of aging, electrical or pharmacologic 
stimuli can be easily detected and tracked throughout the course of experiment. 

 
Neural Module 
2.6 Spike Sorting 
With a typical electrode diameter of 20 - 30 µm, each electrode is capable of recording signals 
from several cells at once. Especially for neural cell cultures it is crucial to identify the network 
activity on a single cell level, as subsequent analysis, such as burst or network burst detection, is 
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primarily based on this information. Under the assumption that the coupling between an individual 
cell and its respective electrode creates a unique spike shape characteristic, several pattern-
matching methods, called spike-sorting algorithms, have been developed in order to address this 
task. The DrCell framework provides a unique spike-sorting algorithm for this purpose, which is 
described in detail in [20].  
 
Unlike other spike sorting algorithms that exclusively use a specific type of feature, such as 
principal components [21, 22] or certain Wavelet based coefficients [23], the implemented 
algorithm calculates a variety of features and chooses the most suitable in a subsequent step. In 
order to distinguish the features most suitable for discriminating the spike shapes present in the 
recorded signal, the probability distribution of each derived feature is calculated over all detected 
spikes. The distributions are then evaluated with the expectation maximization algorithm (EM) 
that approximates the derived probability functions with a mixture of Gaussians. This allows an 
identification of multimodal distributed features that have the potential of discriminating different 
spike shapes. The features with the most distinguishable multimodal character are chosen for the 
final clustering step, with the correlation between the particular features serving as an additional 
criterion. In the last step the spikes are clustered into distinct groups on the basis of the 
determined set of features. Many sorting algorithms differ not only in the chosen set of features 
but also in their classification methods, and either use simple clustering, e.g. k-means [20], fuzzy 
c-means [22] or superparamagnetic clustering [23] or favor more complex classification 
algorithms using artificial neural networks [24] or support vector machines [25]. Since the latter 
classification algorithms usually require extensive and difficult training with specifically designed 
data, an expectation maximization clustering method was chosen in this context, as this approach 
fits best into the overall spike sorting algorithm. As shown in Figure 4, the described spike sorting 
process allows the discrimination of different spike shapes, in other words different cell signals, 
from each other. 
 

 
FIGURE 4: Sorting result for two spiking neurons recorded by one electrode. Two different spike shapes can 

clearly be distinguished. 

 
Thus, the results of any following analysis of network activity or network information processing 
can be significantly enhanced and more detailed interpretation is possible. 
 
2.7 Burst Detection 
The definition of a burst varies in the literature, but most sources use already detected spikes to 
find possible burst events. Since there is no commonly accepted definition, we describe some 
definitions from the literature and then explain the implemented algorithms in detail. It should be 
mentioned that each definition has consequences with regard to the number and time of detected 
bursts and thus may alter the results. 
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One of the oldest methods to detect a burst is based on purely statistical means. A burst is found 
in this case by analyzing the interspike intervals (ISIs). An unexpected series of short ISIs is then 
defined as a burst [26]. 
 
In contrast to this approach, there are several definitions stating that a burst consists of a certain 
number of spikes within a specific timeframe. Turnbull defines a burst as a series of 2–5 spikes 
with a maximum interspike interval of 12-50 ms, with the exact value of these parameters being 
adjustable according to individual needs [27]. Chagnac-Amital defines a burst as a series of at 
least three spikes, with no interspike interval being set [28]. Martinoia and Chiappalone both 
define a burst as a series of at least 10 spikes, with the interval between two spikes not 
exceeding 100 ms [10, 29]. Corner defines several kinds of bursts. A mini-burst is a series of at 
least three spikes with a maximum interspike interval of 100 ms, with only the spikes of a specific 
electrode being considered. A midi-burst is a series of at least three spikes with a maximum 
interspike interval of 1000 ms on more than one electrode [30]. Baker adds another burst-species 
– a micro burst. This kind of burst is a series of at least three spikes with a maximum interspike 
interval of 10 ms [31].  
 

 
FIGURE 5: Raster plot of all recorded electrodes. Each spike is represented by one dot. Simultaneous burst 

events are marked by a green line. 

 
According to Wagenaar, a burst is a group of spikes with a certain interspike interval [32]. The 
limit for the interspike interval is either 100 ms or (4 times the average spike rate 
(spikes/second))-1, whichever is less. After four spikes with these parameters are found, the 
interspike interval is set to the minimum of (3 times the average spike rate)-1 and 200 ms and 
more spikes that meet these criteria are searched before and after this core group.  
 
Jungblut defines a burst based on definitions by [10, 32] as a series of at least 3 spikes with the 
interspike interval of the first two spikes not exceeding 10 ms and with the ISI of the following 
spikes no longer than 20 ms [34]. 
 
Several of the algorithms mentioned above are implemented in the DrCell software. As default 
parameters we set a definition that is equivalent to Jungblut´s burst. The settings can be manually 
changed so that other definitions of bursts can also be used, e.g. the algorithm for Corner´s mini-
burst or the definition of Wagenaar with at least 3 or 4 spikes per burst. For analyzing cardiac 
cells there is no burst and the ISI interval can be set to either 100 ms or 200 ms. All definitions 
are only default values and can be adjusted as the operator wishes. 
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The first spike of the burst is taken as the burst timestamp and the time difference between the 
first and last spike is saved as the burst duration. The interburst interval is calculated between the 
last spike of the nth burst and the first spike of the (n+1)th burst. These values are calculated and 
saved as averages with standard deviation for each channel and for all channels. Furthermore, 
the average number of spikes per burst is saved for each electrode as well as for the whole 
electrode array. The detected spikes and bursts are marked in the signal and can be viewed 
additionally as a spike train or as a raster plot (Figure 5). 
 
2.8 Network Behavior 
The occurrence of simultaneous burst events (SBEs) as shown in Figure 6 can be seen as an 
indicator of the connections and communication within the neural network. 
 
A burst is typically generated in a certain area of the network and then spreads across the whole 
array, which leads to nearly simultaneous bursts at multiple electrodes. Depending on how well a 
neural network is connected, these synchronous events occur rarely to frequently (1 – 30 per 
minute) and show different speeds of propagation [35]. 
 
Because of the large number of possible connections (each cell on the chip can form up to 
10,000 synapses) between the neurons and thus the possible paths the signal can propagate, it 
is impossible to determine the exact pathway by evaluating the burst timestamps on the various 
electrodes. 
 
However, by evaluating the direction of signal propagation, it can be determined whether network 
bursts consistently start from the same region and if they are propagated along similar pathways 
[36]. Further, the number of electrodes that are involved in a network burst and the time between 
the first and the last burst (propagation speed) can be evaluated. 
 
Similar to regular bursts, there are different definitions of network bursts. Van Pelt assumes that 
the number of active electrodes and the spike rate of each electrode are increased if a network 
burst occurs. Thus, the product of the number of active electrodes and the total spike rate can 
serve as a detection criterion [37]. Other definitions use the already detected spikes and bursts 
instead, yet differ in the required number of electrodes that take part in the network event. 
 
In the algorithm by Segev, at least 80% of all active electrodes must show activity within a 100 ms 
time window [38]. This algorithm proves to be reliable in general although we found that the 
criterion of at least 80% of all active electrodes being active simultaneously is very strict. Thus in 
DrCell the number of simultaneous active electrodes is set to five. After a burst has been 
detected, the algorithm checks for other active electrodes exhibiting a burst-event between 40 ms 
before and after the initially detected burst. If at least five such electrodes are found, the 
maximum of the resulting histogram of timestamps is called the network burst. 
 
The histogram is then smoothened by a filter and the timestamps at 20% and 80% of the 
maximum before and after each network burst are saved. Based on these timestamps the rising 
time (20% - 80% before peak), the falling time (80% - 20% after peak) and the duration (20% 
before - 20% after) are calculated and saved. For the entire array all values are given with their 
minimum, maximum and average value including the standard deviation. Furthermore, the 
number of the participating electrodes is also stored, making a comparison between experiments 
straightforward. 
 
Finally, in order to evaluate the similarity between two electrodes, the cross correlation can be 
calculated. The correlation is quantified by Cohen´s Kappa, with a general value range  
between 0, meaning no correlation at all, and 1 meaning complete equality [39]. Additionally, the 
auto correlation can be calculated to evaluate the regularity of spikes or bursts. 
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3. CONCLUSION AND OUTLOOK 

In this paper we present a software toolbox for the analysis of cell signals, regarding both 
neurons and cardiac cells that are recorded with microelectrode arrays. This toolbox thereby 
covers not only all basic processing algorithms such as spike detection, but also features a 
multitude of advanced algorithms for both neural and cardiac signals. It allows, for instance, the 
investigation of spike propagation behavior and, furthermore, the identification of single or 
multiple pacemaker centers in cardiomyocyte cultures. When faced with neuronal data, the 
toolbox provides a wide range of spike and burst analysis methods, such as spike sorting, burst 
and network burst analysis and even facilitates the handling of datasets recorded in stimulation 
experiments. Unlike many commercially available tools, the presented framework furthermore 
enables the user to customize or even add specific methods or features. This allows the user to 
alter, for example, the display of results according to individual needs or desires. It further permits 
the user to implement, for instance, new spike or burst criteria or even completely new processing 
methods in addition to the existing algorithms. New algorithms or functions can be called by 
prepared empty menu-buttons. Here Matlab, which is available at most research institutions, 
provides a very powerful environment to develop novel algorithms.  
 
In the near future we will implement parts of this toolbox into our recording system for online 
analysis of cultured networks. Especially an online spikesorting algorithm will be very helpful for 
online analysis. We also plan to add more algorithms that will support the user in automatically 
analyzing sets of data and comparing their results. Further advancement of the algorithms include 
the propagation of signals over the array or analyzing network behavior by simulating neural 
networks with known mathematically models. 
 
Furthermore the toolbox will serve as analytical tool for future cell culture tests, where the effects 
of radiation on the biological tissue are studied. In addition, recently developed Matlab® 
toolboxes such as the parallel computing toolbox allow various adaptations to Dr. Cell. As the 
presented software can be changed freely, this toolbox can be used to transform the Dr. Cell 
software into a GPU environment, processing individual electrodes independently and in parallel, 
hence speeding up the data analysis significantly. 
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