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Abstract 
 
Image denoising is an interesting inverse problem. By denoising we mean finding a clean image, 
given a noisy one. In this paper, we propose a novel image denoising technique based on the 
generalized k density model as an extension to the probabilistic framework for solving image 
denoising problem. The approach is based on using overcomplete basis dictionary for sparsely 
representing the image under interest. To learn the overcomplete basis, we used the generalized 
k density model based ICA. The learned dictionary used after that for denoising speech signals 
and other images. Experimental results confirm the effectiveness of the proposed method for 
image denoising. The comparison with other denoising methods is also made and it is shown that 
the proposed method produces the best denoising effect. 
 
Keywords: Sparse Representation, Image Denosing, Independent Component Analysis, 
Dictionary Learning.

 
 
1. INTRODUCTION 
Being a simple inverse problem, the denoising is a challenging task and basically addresses the 
problem of estimating a signal from the noisy measured version available from that. A very 
common assumption is that the present noise is additive zero-mean white Gaussian with 

standard deviation σ . In this paper, we only consider the contaminated source, noise, of natural 
images. In other words, the purpose of image denoising is to restore the original image with 
noise-free. This problem appears to be very simple however that is not so when considered under 
practical situations, where the type of noise, amount of noise and the type of images all are 
variable parameters, and the single algorithm or approach can never be sufficient to achieve 
satisfactory results.  
 
Many solutions have been proposed for this problem based on different ideas, such as statistical 
modeling [1], spatial adaptive filters, diffusion enhancement [2], transfer domain methods [3,4], 
order statistics [5], independent component analysis (ICA) and standard sparse coding (SC) 
shrinkage proposed by Alpo Hyvärinen in 1997 [6,7], and yet many more. Among these methods, 
methods based on sparse and redundant representations has recently attracted lots of attentions 
[8]. Many researchers have reported that such representations are highly effective and promising 
toward this stated problem [8]. Sparse representations firstly examined with unitary wavelet 
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dictionaries leading to the well-known shrinkage algorithm [5]. A major motivation of using 
overcomplete representations is mainly to obtain translation invariant property [9]. In this respect, 
several multiresolutional and directional redundant transforms are introduced and applied to 
denoising such as curvelets, contourlets, wedgelets, bandlets and the steerable wavelet [5,8]. 
 
Moreover, the Ref. [10] gave an important conclusion: when ICA is applied to natural image data, 
ICA is equivalent to SC. However, ICA emphasizes independence over sparsity in the output 
coefficients, while SC requires that the output coefficients must be sparse and as independent as 
possible. Because of the sparse structures of natural images, SC is more suitable to process 
natural images than ICA. Hence, SC method has been widely used in natural image processing 
[10,11]. 
 
The now popular sparse signal models, on the other hand, assume that the signals can be 
accurately represented with a few coefficients selecting atoms in some dictionary[12]. Recently, 
very impressive image restoration results have been obtained with local patch-based sparse 
representations calculated with dictionaries learned from natural images [13,14]. Relative to pre-
fixed dictionaries such as wavelets [1], curve lets [15], and band lets [16], learned dictionaries 
enjoy the advantage of being better adapted to the images, thereby enhancing the sparsity.  
 
However, dictionary learning is a large-scale and highly non-convex problem. It requires high 
computational complexity, and its mathematical behavior is not yet well understood. In the 
dictionaries aforementioned, the actual sparse image representation is calculated with relatively 

expensive non-linear estimations. Such as 1l  or matching pursuits [17,18]. More importantly, as 

will be reviewed, with a full degree of freedom in selecting the approximation space (atoms of the 
dictionary), non-linear sparse inverse problem estimation may be unstable and imprecise due to 
the coherence of the dictionary [19].  
 
Structured sparse image representation models further regularize the sparse estimation by 
assuming de- pendency on the selection of the active atoms. One simultaneously selects blocks 
of approximation atoms, thereby reducing the number of possible approximation spaces [20,21]. 
These structured approximations have been shown to improve the signal estimation in a 
compressive sensing context for a random operator. However, for more unstable inverse 
problems such as zooming or deblurring, this regularization by itself is not sufficient to reach 
state-of-the-art results. Recently some good image zooming results have been obtained with 
structured sparsity based on directional block structures in wavelet representations [19]. 
However, this directional regularization is not general enough to be extended to solve other 
inverse problems.  
 
In this paper we show that the over complete basis dictionary which learning by using the ICA 
probabilistic technique can capture the main structure of the data used in learning the dictionary, 
which used to represent the main component of the image. The results show that our technique is 
as the state-of-the-art in a number of imaging inverse problems, at a lower computational cost. 
The paper is organized as follows. In sections 2 and 3, we briefly introduce ICA and sparse 
representation. In section 4, we briefly present modeling of the scenario in decomposing a signal 
on an overcomplete dictionary in the presence of noise and discuss our algorithm in the real 
image denoising task. In section 5, we discuss the results of using our algorithm in image 
denoising. At the end we conclude and give a general overview to future’s work. 
 

2. INDEPENDENT COMPONENT ANALYSIS 
Independent Component Analysis (ICA) is a higher order statistical tool for the analysis of 
multidimensional data with inherent data addictiveness property. The noise is considered as 
Gaussian random variable and the image data is considered as non-Gaussian random variable. 
Specifically the Natural images are considered for research as they provide the basic knowledge 
for understanding and modeling of human vision system and development of computer vision 
systems. 
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 In Gaussian noise, each pixel in the image will be changed from its original value by a (usually) 
small amount. A histogram, a plot of the amount of distortion of a pixel value against the 
frequency with which it occurs, shows an estimation of the distribution of noise. While other 
distributions are possible, the Gaussian (normal) distribution is usually a good model, due to the 
central limit theorem that says that the sum of independent noises tends to approach a Gaussian 
distribution. The case of Additive White Gaussian Noise (AWGN) will be considered. The 
acquired image is expressed in this case in the following form: 
 
 x s n= +  (1) 

 
where x  is the observed/acquired image, s  is the noiseless input image and n  is the AWGN 

component. 
 
Estimating x requires some prior information on the image, or equivalently image models. 
Finding good image models is therefore at the heart of image estimation. 
 
Some ICA algorithm such as FastICA [6] can be extended to overcomplete problems [22]. 
 
In information-theoretic ICA methods [23,24] statistical properties (distributions) of the sources 

are not precisely known. The learning equation 
1( )W A y Wx

−≅ =  has the form: 

 

  ( 1) ( ) [ { ( ) }] ( )T
W W I E x x Wη ϕ+ = + −k k  k  (2) 

 
where is the score function by obtain from: 
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The unknown density functions ip  can be parameterized, as Generalized K Density (GKD), 

which is characterized by the following probability density function [25] 
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where the generalized exponential function exp ( )k x  given by 

 

 

1

2 2exp ( ) ( 1 )k
k

x k x kx= + +  (5) 

 

where 0α > is a shape parameter, 0β >  is a scale and [0,1)k ∈  measures the heaviness of 

the right tail.  
 
The ICA algorithm in the framework of fast converge Newton type algorithm, is derived using the 
parameterized generalized k distribution density model. The nonlinear activation function in ICA 
algorithm is self-adaptive and is controlled by the shape parameter of generalized k distribution 
density model. To estimate the parameters of such activation function we use an efficient method 
based on maximum likelihood (ML). If generalized k probability density function is inserted in the 
optimal form for score function the expression for flexible nonlinearity is obtained:  
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The maximum likelihood estimators (MLEs) [26,27]  is 
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Normally, ML parameter estimates are obtained by first differentiating the log-likelihood function 
in equation(7) with respect to the generalized k-distribution parameters and then by equating 
those derivatives to zero (e.g. see [28]). Instead, here we choose to maximize the ML equation in 
equation (7) by resorting to the Nelder-Mead (NM) direct search method [27] . The appeal of the 
NM optimization technique lies in the fact that it can minimize the negative of the log-likelihood 
objective function given in equation (7) essentially without relying on any derivative information. 
Despite the danger of unreliable performance (especially in high dimensions), numerical 
experiments have shown that the NM method can converge to an acceptably accurate solution 
with substantially fewer function evaluations than multi-directional search or steeps descent 
methods [27]. Good numerical performance and a significant improvement in computational 
complexity for our estimation method are also insured by obtaining initial estimates from the 
method of moments. Therefore, optimization with the NM technique to produce the refined ML 

shape estimates α̂  and k̂ can be deemed as computationally efficient. Also, an estimate for 

parameter β̂ can be calculated for known α̂  and k̂  
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3. SPARSE REPRESENTATION AND DICTIONARY LEARNING 
Sparse representations for signals become one of the hot topics in signal and image processing 

in recent years. It can represent a given signal 
nx R∈ as a linear combination of few atoms in an 

overcomplete dictionary matrix 
n kA ×∈�   that contains k atoms { }

1

k

i i
a

=
  (k>n).  The 

representation of x may be exact x As=  or approximate, x As≈ ,satisfying || ||
p

x A s ε− ≤ , 

where the vector s  is the sparse representation for the vector x .To find s  we need to solve 

either  
 

 ( )0 0
min

s
P s x As=  subject to   (9) 

Or 

 ( )0, 20
min ||

s
P s x Asε ε− ≤  subject to  ||   (10) 
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where
0
is the 0l  norm, the number on non-zero elements.  

 
In this paper we use an ICA based algorithm to learn the basis of an overcomplete dictionary. 
Like the known K-SVD algorithm but instead of using the SVD decomposition for dictionary atoms 
update we used the FastICA algorithm with nonlinearity from the Generalized K Distribution for 
sparse representation for the data matrix. Also we choose the Gabor dictionary as an initial 
dictionary. 

 
4. ICA FOR OVERCOMPLETE DICTIONARY LEARNING 
ICA can be efficient in dictionary learning. Because ICA is most often applied for solving 
instantaneous Blind Source Separation (BSS) problem: 
 

, ,sN M N T
x As A R R

× ×= ∈ ∈         (11) 

 
Classical ICA methods solve complete (determined and over-determined) BSS problems: 

M N≤ . That was one of the main arguments against using ICA for dictionary learning. 

Overcomplete dictionary is of practical interest because results in denoising can be better when 
dictionary is overcomplete (a frame). 
 
In comparison with the probabilistic framework to basis learning in [29], that in partis also based 
on the use of ICA, the use of ICA proposed here is motivated by two reasons: 
 

1. It extends the probabilistic framework to learn the overcomplete basis, this is achieved 
through the use of the FastICA algorithm, [12], that works in sequential mode. 
 

2. In regard to the probabilistic framework to basis learning presented in [29], the adopted ICA 
approach is more flexible, this is due to the fact that proper selection of the nonlinear 
functions (that are related to parameterized form of the probability density functions of the 
representation) enables basis learning that is tied with a representation with the pre-
specified level of sparseness without affecting the structure of the basis learning equation 
(by ICA the basis inverse is actually learned). 

 
As opposed to that, in the Bayesian paradigm to the basis learning presented in [29], the 
structure of the basis learning equation depends on the choice of what was previously imposed 
on the probability density function of the sparse representation coefficients. We suppose that the 

linear model y D x=  is valid; where y  and x are random vectors (we interpret columns of the 

data matrix Y , denoted as iy , as realizations of y ), and D  is the basis matrix we want to 

estimate. For now we consider only the complete case ( D  is a n n×  square matrix, and y and 

x  are n dimensional).Hence, the basis D  is what in blind source separation is referred to as a 

mixing matrix. Extraction of the code matrix X  (also referred to as a source matrix in blind 
source separation) can be performed by means of the ICA algorithms. 
 
Herein, we are interested in the ICA algorithm that: 
 

1. Can be casted into the probabilistic framework tied with the linear generative model as 
in[29]. 
 

2. Can be extended for learning the overcomplete basis. 
 

When blind source separation problem, y D x=  , the minimization of the mutual information 

( )I x is used: 
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where ( )

i
H x stands for the differential entropy of the representation and (y)H  stands for the 

joint entropy of the data. 
 
The ICA algorithms that maximize information flow through nonlinear network (Infomax 

algorithm), maximize likelihood (ML) of the ICA model y D x=  , or minimize mutual information 

between components of 
1

x D y
−= , are equivalent in a sense that all minimize ( )I x and yield 

the same learning equation for 
1D −
. 

 

 
1 1 1( 1) ( ) [ ( ( ) ( ) ] ( )T

D i D i I x k x i D iη φ− − −+ ← + −  (13) 

 
If the generalized k probability density function is inserted in the optimal form for score function 
the expression for flexible nonlinearity is obtained by Equation (6).This enables learning the basis 

matrix D  that gives sparse representation for iy .For learning an overcomplete dictionary basis 

we used the FastICA algorithm with the nonlinearity obtained from the GKD. Thus, nonlinear 
function in the FastICA algorithm can be also chosen to generate sparse distribution of the 

representation ix . In the experiments we have used the nonlinearity comes from the GKD, 

which models sparse or super-Gaussian distributions. 
 
In the sequential mode of the FastICA, basis vectors are estimated one at a time. After every 
iteration, the basis vector is orthogonalized with respect to previously estimated basis vectors 
using the Gram-Schmidt orthogonalization. This idea can be extended to over complete case as 
follows: 

 
1

1

( )
i

T

i i i j j

j

d d d d dα
−

=

← − ∑  (14) 

and the dictionary updated using equation (13), where iφ  represents the score function defined 

as  equation(6). 
 

Reconstruction: reconstruct the denoised image �
1

x D y
−= . 

 

5. EXPERIMENTS AND RESULTS 
In this work, the underlying dictionary was trained with the new ICA technique, we used an 

overcomplete Gabor dictionary as an initial dictionary of size 64 256× generated by using Gabor 

filter basis of size 8 8× , each basis was arranged as an atom in the dictionary. The dictionary 

then learned and updated by using the proposed algorithm in section 4. We applied the algorithm 

to images, mainly of size 256 256×  and 512 512×  with different noise levels, "Lena" and 

“Barbra” images. The results showed that using the overcomplete dictionary learned by using the 
FastICA gave a good results. To evaluate our method we calculate the PSNR for denoised 
BARBRA and LENA images using our method, K-SVD method, and Clustered-based Sparse 
Representation (CSR) [30]. The comparison results between the three methods are shown in 
figure 1 and figure 2. The results of the overall algorithm for the images ”Barbara” and “Lena” for 

2
n  = 20 is shown in Table 1, as it is seen, when the level of noise grows, our approach 

outperforms K-SVD with OMP and CSR methods. We can conclude that the mentioned 
algorithms are suitably designed for noisy cased with known low energy. 
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FIGURE 1: From left to right: original image, noisy image with zero-mean white Gaussian noise of 
2

n  = 

20, the cleaned image via ICA based sparse representation described. 

 
 

 
FIGURE 2: From left to right: original image, noisy image with zero-mean white Gaussian noise of  

2
20n = , the cleaned image via ICA based sparse representation described. 

 

S
ig

m
a

 BARBARA LENA 

K-SVD 
ICA 

based 
CSR K-SVD 

ICA 
based 

CSR 

5 38.08 37.41 37.52 38.60 38.18 38.56 

10 34.42 34.51 34.35 35.52 35.42 35.38 

15 32.36 32.79 32.45 33.69 33.88 33.62 

20 30.83 32.02 30.94 32.38 33.46 32.56 

25 29.62 31.05 30.02 31.32 32.72 31.47 

 
TABLE 1: The PSNR computed for Barbra image and Lena image with different noise variance level 

(sigma). 
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6. DISCUSSION AND CONCLUSION 
ICA-learned dictionary yields good or favorable results when compared against other methods. 
Yet, the ICA-based dictionary learning is faster than those by competing methods. It appears that 
ICA-learned dictionary is less coherent than the dictionary learned by K-SVD and the sparsity 
based structural clustering (CSR) on the same training set. 
 
In this paper a simple algorithm for denoising application of an image was presented leading to 
state-of-the-art performance, equivalent to and sometimes outperform recently published leading 
alternative. We addressed the image denoising problem based on sparse coding over an 
overcomplete dictionary. Based on the fact that the ICA can capture the most important 
component of real data, which implies on real images. We presented our algorithm, which used 
the technique of learning the dictionary to be suitable for representing the important component in 
the image by using the FastICA technique that uses the nonlinearity induced from the 
Generalized K Distribution (GKD) for updating the dictionary in the learning process. 
Experimental results show satisfactory recovering of the source image. Moreover, for our 
technique, the larger the noise level is, the better the effect on the denoising results is. 
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