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Abstract 
 
Some malware are sophisticated with polymorphic techniques such as self-mutation and 
emulation based analysis evasion. Most anti-malware techniques are overwhelmed by the 
polymorphic malware threats that self-mutate with different variants at every attack. This research 
aims to contribute to the detection of malicious codes, especially polymorphic malware by utilizing 
advanced static and advanced dynamic analyses for extraction of more informative key features 
of a malware through code analysis, memory analysis and behavioral analysis. Correlation based 
feature selection algorithm will be used to transform features; i.e. filtering and selecting optimal 
and relevant features. A machine learning technique called K-Nearest Neighbor (K-NN) will be 
used for classification and detection of polymorphic malware. Evaluation of results will be based 
on the following measurement metrics—True Positive Rate (TPR), False Positive Rate (FPR) and 
the overall detection accuracy of experiments. 
 
Keywords: Malware Detection, Static Analysis, Dynamic Analysis, Polymorphic Malware, 
Machine Learning 

 

1. INTRODUCTION 
Nowadays, the world relies on information technology (IT) as it facilitates human daily activities. 
Multiple devices such as personal computers, laptops, tablets, etc., have gained popularity when 
used for accessing IT. Such devices are widely used in offices, homes, etc., for multiple services. 
However, there is a great concern regarding security in the use of IT. A lot of malware such as 
rootkits, spyware, trojan horses, bots and other types are released by attackers on a daily basis. 
According to the Symantec report [1], there were 317 million pieces of malware injected in year 
2014, which means that almost one million new threats were created every day. Many developers 
have tried to overcome this situation through creation of anti-malware programs—such as 
Symantec antivirus [1], Lavasoft [2] and many others. However, these anti-malware have quite 
limited efficiency in identifying and eliminating threats [3]. This gap has attracted much research 
interest in the area, especially on malware analysis to achieve new reliable and more promising 
algorithms. 
 
Malware are becoming more sophisticated with polymorphic behaviors [3], [4], [5] in order to hide 
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themselves from analysis and detection. Polymorphism is the capability of the malware to change 
identity at any instance of infection. It is not a new malware, but it is a variant of existing malware 
which is packed and contains some code obfuscation. These variants of existing malware will 
confuse anti-virus and might then be detected as benign due to the lack of appropriate signatures 
to contain them. A big problem that arises is how to efficiently deal with such polymorphic 
malware. 
 
Motivation 
Previous researchers have met a number of challenges in addressing this issue. Most proposed 
solutions have been relying on extracting behavioral features from malware and use different 
machine learning methods to implement detection approaches. It's in that context that this 
research aims at designing a novel approach in terms of feature engineering and detection 
mechanisms. This approach will integrate advanced components of two powerful analysis 
techniques for a comprehensive malware dissection and feature extraction process. These 
techniques are known as advanced static and advanced dynamic analyses. Structural and 
behavioral features will be extracted. A Machine learning technique called K-NN will be used in 
the process of designing or implementing a detection approach. The overall objective will be to 
achieve high detection accuracy that significantly reduces false alarms, increases the rate of 
correctly detected malware and outperforms previous approaches. The study will mainly focus on 
malicious portable executable (PE) files. The PE file format is a data structure that contains 
necessary information for the Operating System loader to manage executable code [6]. 

2. RELATED WORK 
Malware analysis helps to examine the capabilities of a malicious program in order to better 
investigate the nature of security breach incident and prevention of any further infections [6]. 
There are two commonly used malware analysis techniques, i.e. static analysis [6]  and dynamic 
analysis [6]. 
 
Static analysis [7], [5] is a process whereby information about malicious program is extracted 
without being executed. Non execution of the malicious code makes static analysis safer 
compared to dynamic analysis in which malicious code must be executed on the machine used 
for analysis [6]. Basic static analysis can show basic information about the malicious program 
such as its version, file size, file format, any suspicious imports, etc. Basic static analysis is 
straightforward and quick, but not very effective as important details can be missed [6]. Advanced 
static analysis deals with code/structure analysis in which the knowledge of assembly language, 
compiler code and Operating system concepts are required [6]. Malware functionality is analyzed 
through inspecting the internal code of the malware [4].  

 
Dynamic analysis [7],[8] is the process of analyzing a malicious program through execution and 
monitor its run time functionality of such an execution. Basic dynamic analysis consists of 
observing the behavior of a malware and does not require deep programming skills while the 
advanced dynamic analysis makes a profound examination of the internal state of a running 
malicious program while extracting detailed information [6]. The code is analyzed at run time and 
any code hidden through packing is revealed [9]. The identity of a malware is programmatically 
identified. Function calls, parameter analysis and information flow are all visualized [4]. 
 
Most research on malware variants or polymorphic malware is based on behavioral analysis in 
which malware functionalities are investigated at run time [8]. Ahmadi et. al [7] developed a 
method to detect malicious files based on behavioral sequential patterns in which the behavior of 
malicious executables were analyzed. API calls were extracted and a log was created. The 
repetitive patterns in the API call log were considered to make the initial dataset for classification. 
The Fisher score algorithm was used for feature selection in their research while support vector 
machines was combined with decision tree algorithms and used for malware detection. The 
training dataset contained 806 malware and 306 benign files. A malware detection accuracy of 
95% was achieved. Cesare et. al [9] detected new malware samples and variants of existing ones 
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through generating signatures for any newly identified malware. It handles unpacking. The 
sample consisted of 15409 malware out of which, their results showed 88.26% were classified as 
variants of existing ones and 34.24% were classified as known malware. The combined static and 
dynamic analysis in [5] was done on a malicious file called TT.exe which breaks into a system 
and performs malicious activities. The advantages of combining both methods have been found 
to be beyond preliminary analysis as a malware can deeply be dissected to reveal more of its 
functionalities. 
 
Behavioral analysis based on machine learning [10] focused on malware classification and 
clustering. 1270 malware samples of different format, namely; pdf, executables, html, zipped, 
jpeg, etc. were investigated. Logic Model Tree and K-Means algorithms were used for the task of 
classification and clustering respectively. The results show that 18% of analyzed malware were 
embedded with networking capabilities to connect to the outer world, while 82% aimed to corrupt 
the system locally or network resources. Malware were also grouped successfully according to 
their file format types. Comar et. al in [10] combined supervised and unsupervised learning 
method to capture packets from a live network connection and use the knowledge of existing 
attacks to classify new network flow as either new attack, existing or variants of existing. K-
Nearest Neighbor (K-NN) and Support Vector Machine (SVM) algorithms have been used in the 
classification process. 216,899 flows have been captured, out of which 4,394 (2%) were found 
malicious and categorized in 38 known malware classes. 
 
Liang et. al, in [11] proposed a novel method to detect variants based on behavioral dependency. 
Features were extracted using Temu dynamic analysis software and were customized noise 
removal. In their research, Jaccard algorithm was used for similarity calculation. Their 
experiments were done using two different malware and six variants of a Trojan malware called 
Ghost. Results showed that the two different malware had a weighted similarity of 27%, whereas 
the six variants had a strong weighted similarity ranging from 86.16% to 96.2%. 
 
Naidu et. al, in [12] proposed a technique that automatically generates super- signatures to 
contain polymorphic malware. They used hexadecimal characteristics as features as well as 
Needleman-Wunsch and Smith-Waterman algorithms for string matching. Experiments were 
done on multiple variants of “JS.Cassandra” malware and detection rate was 96.59%. Table 1 
below, discusses more about different techniques as well as their strengths and limitations. 
 

Technique Characteristics Strengths/Cont
ribution 

Limitations 

Malware detection by 
behavioral sequential 

patterns][13] 

-Uses API calls based features. 
- Random forest and SVM are used for 

classification 

-Effective in 
detecting malware 

variants. 

-Static features not 
considered. 

-High rate of False 
Positive detections 

Malicious data 
classification using 

structural information 
and behavioral 
specifications in 
executables[8] 

-Uses common static and API call 
features 

-J48 algorithm is used for classification 

-Can detect 
similarities among 
malware samples 

-can’t handle anti 
analysis features 

A Behavior-Based 
Malware Variant 

Classification 
Technique[p70] 

-API calls based features are used. 
-Weighted similarity among malware 
behaviors is calculated using Jaccard 

similarity algorithm 

-Effective at 
detecting similarity 

among malware 
variants 

-Static features not 
considered. 

-High rate of False 
Positive detections 

Combining supervised 
and unsupervised 

learning for zero-day 
malware detection[14] 

-Network flow based features are 
extracted using IDS/IPS 

-Uses one class SVM algorithm for 
classification. 

-Effective at 
detecting 

polymorphic. 
-Can detect new 
malware from a 
suspicious flow 

-Limited to network 
based features 

- High rate of False 
Positive detections 
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Needleman-Wunsch 
and Smith-Waterman 

Algorithms for 
Identifying Viral 

Polymorphic Malware 
Variants[12] 

-static Hexadecimal based features 
are extracted. 

- Needleman-Wunsch and Smith-
Waterman Algorithms are used for 

creating effective signatures. 

-Effective at 
generating 
appropriate 

signatures to 
contain 

polymorphic 
malware. 

-only static features 
are considered. 
-Can have false 

positive detections 

Proposed solution: 
Integrated Feature 

Extraction Approach 
towards Detection of 
Polymorphic Malware 

in Executable Files 

Comprehensive dissection of malware 
using Advanced static analysis and 

advanced dynamic analysis as 
discussed in Table 2 and 3. 

 
Correlation based feature selection 

(CFS) algorithm. CFS helps in creating 
good feature subsets that are highly 
correlated with the predicted class. 

 
This method is chosen because it is 

fast, produces high ranking and 
correlated features compared to 

alternative methods used in other 
techniques. As we’ll have a big feature 
set, the accurate automated selection 

is also well done with CFS. 
 

K-NN classifier to detect polymorphic 
malware with high accuracy. 

Comparing to other methods used in 
previous methods, K-NN is selected 

due to its good performance and 
robustness in dealing with large 

datasets with many features[15]. 

This method will 
address the 
limitations of 

previous 
techniques by 
developing an 

approach with the 
following 

components: 
-Detection of 
polymorphic 

malware with high 
accuracy. 

-Significantly 
minimized false 

detection alarms. 
-Consideration of 
hidden malware 
functionalities, 

especially 
analysis/detection 

avoidance 
capabilities. 
-Increased 
detection 

performance in 
case of large 

dataset and many 
features. 

-Fast detection 
process 

 

 

 

TABLE 1: Detection Techniques Comparison. 

3. METHODOLOGY  
3.1 Proposed Detection Approach 
The proposed detection approach is illustrated by the flowchart in figure 1. A malware sample is 
analyzed using advanced dynamic analysis and advanced static analysis. Dynamic analysis 
leads to the extraction of behavioral features. For static analysis a sample is first investigated to 
identify packing traces. If it’s packed, it will therefore be unpacked. Once a packet is not packed, 
structural features are extracted. All features are combined to make a big feature dataset. These 
features will then be filtered to select a reduced dataset which comprises most optimal features 
that are relevant for classification task. Lastly, the classification process will be done based on 
previously preprocessed features in order to detect polymorphic malware. 
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FIGURE 1: The Detection Approach Flowchart. 

 
3.2 Data Collection 
We will collect relevant malware samples for researchers collected from online repositories [16] 
such as—Open Malware, Malware repository,  Malware Samples[16]. 
 
3.3 Extraction of Features from Malware Data Samples 
Having acquired relevant malware samples, the research seeks to have as more descriptive 
information as possible about a given malware through feature extraction. Features are 
identification characteristics of malware used to build the detection knowledge. To extract these 
features this research will employ a combination of advanced static and advanced dynamic 
analysis techniques. Tools to be used are shown in table 2 and the main features to be extracted 
are shown in table 3. 
 

Tools Description 

PEiD and UPX 
For identifying packer and compiler information and regeneration of original 

unpacked file. 

IDA pro For disassembling the malware binary for further analysis 

Process Monitor 
For viewing real-time file system, process activity and registry, Network activity,  

API calls, Mutex, Self-modifying code traces 

Dependency Walker For exploring the Dynamic Link Libraries (DLL) and imported functions. 

Regshot To capture and compare registry snapshots to discover any modifications 

ApateDNS For controlling DNS requests and response in case of malware network activity 

Wireshark: For capture and analyze network traffic 

INetSim 
for simulating network services such as DNS, HTTP, HTTPS, FTP, IRC, 

DNS, SMTP 
 

TABLE 2: Tools and Their Characteristics. 
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Feature 
Strings, DLLs functionality, User defined functions, Self-modifying code traces, Attacker identification, 

Exception parameters, Passwords, Anti-debug/analysis constructs, Kernel mode activity, User mode activity, 
File activity, Rootkit functionalities, Windows Digital signature, Hooking, Persistence , privilege escalation 
attack, DLLs injection, Runtime DLLs, Process replacement functionalities, Entropy, Checksum, API calls, 

code noise patterns, File activity, Registry, Service, Mutex, Processes, Network 
 

TABLE 3: Features to be Extracted. 

 
3.4 Feature Selection 
Not all features extracted will be relevant for this research. Therefore, after extracting features, 
some features with low impact will be removed because they might have a negative impact on the 
overall accuracy. Techniques such as Fisher score algorithm [7], correlation based algorithm [14] 
and tree based algorithm [17] are good at feature selection process. Fisher score algorithm 
selects high ranking features and tree-based feature transformation approach selects and 
removes noise from data. Correlation based feature selection (CFS) algorithm helps in creating 
good ranking feature subsets that are highly correlated with the predicted class, especially in 
case of large feature dataset. CFS is therefore chosen to be used for this research. 
 
Most relevant features will be retained and will be candidate instances of the training dataset. 
Relevant features will then form an optimal feature subset to be used in classification. The 
advantages of feature selection include:  
 
reduced overfitting (avoiding the worst case scenario in prediction), significant reduction of 
training time and improved accuracy. CFS algorithm will be used for selecting optimal features. 
The merit of a feature subset S with k features is computed according to equation 1. 
 

       
 

    

            

 (1) 

 
where     is the average value of feature classification correlations, and     is the average value 

of feature-feature correlations.  
 
CFS will finally be computed according to equation 2 
 

         
 

                

                  
         

  (2) 

 
, where     

 and      
 variables are correlations. 

 
3.5 Designing The Detection Approach  
This task will mainly consist of building classification models that will optimally generalize the 
predictions in detecting polymorphic malware. The choice of a classifier depends on the type of 
features, dataset size and also the problem to be solved [15]. Classifiers like Decision Trees (DT) 
[15], Support Vector Machines (SVM) and K-nearest neighbor (K-NN) perform well in different 
situations [15]. SVM and K-NN are suitable for this research as they can support similarity 
function testing for prediction. SVM is suitable to work with few data points because it is slow [15]. 
K-NN is good for many data points and it is fast [15]. Therefore, to perform classification, the 
research proposes to use K-nearest neighbor (K-NN) algorithm [18] because it has the ability to 
compute similarities among instances. K-NN will be implemented and customized to meet the 
challenges of classification. Distances are calculated between the targeted instance and all other 
instances. The shortest distance shows the strongest similarity. When there is a strong similarity, 
it is means that there are variants in instances [18]. These variants are signs of polymorphism.   
Nearest neighbors will be computed as follows: 
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1. Let   
   

represents all training examples, where   is the number of features and   is the 

number of instances. 
2. Let   be the number of nearest neighbors determined beforehand in building (K-NN) 

model, 

3. Any distance between the targeted instance (  
   

) and all training examples   
   

. 

Euclidean distance will be computed as: 

       
   

   
   

       
   

   
    

        where     and       (3) 

4. Identify all categories of training instances for the sorted values under   
 

3.6 Evaluation and Validation 
To evaluate the results, main performance metrics namely True positive (TP), False positive (FP), 
True negative (TN), and False negative (FN) will be calculated. True Positive rates (TPR) will give 
the percentage of correctly identified as polymorphic samples. False Positive Rates (FPR) will 
give the percentage of wrongly identified as polymorphic samples. The overall accuracy of the 
model will be calculated based on total number in the sample and those that were correctly 
detected as shown in equation 6. Performance metrics are calculated as follows: 
 

    
  

     
        (4) 

 

    
  

     
        (5) 

 
Overall accuracy is the proportion of the total number of predictions that are correct and will be 
computed as follows: 
 

         
       

           
         (6) 

4. EXPECTED OUTCOME 
The expected outcome is a polymorphic malware detection approach that increases overall 
detection performance in terms of accuracy and speed. Accuracy is measured by the high rate of 
malware correctly identified as polymorphic as well as significantly minimized rate of false 
detection alarms. Detection speed will be high due to the optimized feature engineering process. 

5. CONCLUSION AND FUTURE WORK 
The research is intending to address the issue of polymorphic malware detection. This will be 
done by collecting malware samples, analyzing them and extract features using advanced static 
and advanced dynamic analyses techniques. Feature selection will be done using Correlation 
Feature selection algorithm. Classification will be done using machine learning technique called 
K-NN. Evaluation of detection performance will be done based on measuring overall accuracy, 
true positive rate as well as false negative rates. Future work will focus, firstly on the 
implementation of the proposed approach and provide simulation results; secondly on the 
customization of different machine learning algorithms for more optimized higher detection rates. 
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