
Emmanuel Masabo, Kyanda Swaib Kaawaase, Julianne Sansa-Otim & Damien Hanyurwimfura

International Journal of Computer Science and Security (IJCSS), Volume (11) : Issue (2) : 2017 25

Integrated Feature Extraction Approach Towards Detection of
Polymorphic Malware In Executable Files

Emmanuel Masabo masabem@gmail.com
College of Computing and Information Sciences
Makerere University, Kampala, Uganda

Kyanda Swaib Kaawaase kswaibk@cis.mak.ac.ug
College of Computing and Information Sciences
Makerere University, Kampala, Uganda

Julianne Sansa-Otim sansa@cit.ac.ug
College of Computing and Information Sciences,
Makerere University, Kampala, Uganda

Damien Hanyurwimfura hadamfr@gmail.com
College of Science and Technology
University of Rwanda, Kigali, Rwanda

Abstract

Some malware are sophisticated with polymorphic techniques such as self-mutation and
emulation based analysis evasion. Most anti-malware techniques are overwhelmed by the
polymorphic malware threats that self-mutate with different variants at every attack. This research
aims to contribute to the detection of malicious codes, especially polymorphic malware by utilizing
advanced static and advanced dynamic analyses for extraction of more informative key features
of a malware through code analysis, memory analysis and behavioral analysis. Correlation based
feature selection algorithm will be used to transform features; i.e. filtering and selecting optimal
and relevant features. A machine learning technique called K-Nearest Neighbor (K-NN) will be
used for classification and detection of polymorphic malware. Evaluation of results will be based
on the following measurement metrics—True Positive Rate (TPR), False Positive Rate (FPR) and
the overall detection accuracy of experiments.

Keywords: Malware Detection, Static Analysis, Dynamic Analysis, Polymorphic Malware,
Machine Learning

1. INTRODUCTION
Nowadays, the world relies on information technology (IT) as it facilitates human daily activities.
Multiple devices such as personal computers, laptops, tablets, etc., have gained popularity when
used for accessing IT. Such devices are widely used in offices, homes, etc., for multiple services.
However, there is a great concern regarding security in the use of IT. A lot of malware such as
rootkits, spyware, trojan horses, bots and other types are released by attackers on a daily basis.
According to the Symantec report [1], there were 317 million pieces of malware injected in year
2014, which means that almost one million new threats were created every day. Many developers
have tried to overcome this situation through creation of anti-malware programs—such as
Symantec antivirus [1], Lavasoft [2] and many others. However, these anti-malware have quite
limited efficiency in identifying and eliminating threats [3]. This gap has attracted much research
interest in the area, especially on malware analysis to achieve new reliable and more promising
algorithms.

Malware are becoming more sophisticated with polymorphic behaviors [3], [4], [5] in order to hide

Emmanuel Masabo, Kyanda Swaib Kaawaase, Julianne Sansa-Otim & Damien Hanyurwimfura

International Journal of Computer Science and Security (IJCSS), Volume (11) : Issue (1) : 2017 26

themselves from analysis and detection. Polymorphism is the capability of the malware to change
identity at any instance of infection. It is not a new malware, but it is a variant of existing malware
which is packed and contains some code obfuscation. These variants of existing malware will
confuse anti-virus and might then be detected as benign due to the lack of appropriate signatures
to contain them. A big problem that arises is how to efficiently deal with such polymorphic
malware.

Motivation
Previous researchers have met a number of challenges in addressing this issue. Most proposed
solutions have been relying on extracting behavioral features from malware and use different
machine learning methods to implement detection approaches. It's in that context that this
research aims at designing a novel approach in terms of feature engineering and detection
mechanisms. This approach will integrate advanced components of two powerful analysis
techniques for a comprehensive malware dissection and feature extraction process. These
techniques are known as advanced static and advanced dynamic analyses. Structural and
behavioral features will be extracted. A Machine learning technique called K-NN will be used in
the process of designing or implementing a detection approach. The overall objective will be to
achieve high detection accuracy that significantly reduces false alarms, increases the rate of
correctly detected malware and outperforms previous approaches. The study will mainly focus on
malicious portable executable (PE) files. The PE file format is a data structure that contains
necessary information for the Operating System loader to manage executable code [6].

2. RELATED WORK
Malware analysis helps to examine the capabilities of a malicious program in order to better
investigate the nature of security breach incident and prevention of any further infections [6].
There are two commonly used malware analysis techniques, i.e. static analysis [6] and dynamic
analysis [6].

Static analysis [7], [5] is a process whereby information about malicious program is extracted
without being executed. Non execution of the malicious code makes static analysis safer
compared to dynamic analysis in which malicious code must be executed on the machine used
for analysis [6]. Basic static analysis can show basic information about the malicious program
such as its version, file size, file format, any suspicious imports, etc. Basic static analysis is
straightforward and quick, but not very effective as important details can be missed [6]. Advanced
static analysis deals with code/structure analysis in which the knowledge of assembly language,
compiler code and Operating system concepts are required [6]. Malware functionality is analyzed
through inspecting the internal code of the malware [4].

Dynamic analysis [7],[8] is the process of analyzing a malicious program through execution and
monitor its run time functionality of such an execution. Basic dynamic analysis consists of
observing the behavior of a malware and does not require deep programming skills while the
advanced dynamic analysis makes a profound examination of the internal state of a running
malicious program while extracting detailed information [6]. The code is analyzed at run time and
any code hidden through packing is revealed [9]. The identity of a malware is programmatically
identified. Function calls, parameter analysis and information flow are all visualized [4].

Most research on malware variants or polymorphic malware is based on behavioral analysis in
which malware functionalities are investigated at run time [8]. Ahmadi et. al [7] developed a
method to detect malicious files based on behavioral sequential patterns in which the behavior of
malicious executables were analyzed. API calls were extracted and a log was created. The
repetitive patterns in the API call log were considered to make the initial dataset for classification.
The Fisher score algorithm was used for feature selection in their research while support vector
machines was combined with decision tree algorithms and used for malware detection. The
training dataset contained 806 malware and 306 benign files. A malware detection accuracy of
95% was achieved. Cesare et. al [9] detected new malware samples and variants of existing ones

Emmanuel Masabo, Kyanda Swaib Kaawaase, Julianne Sansa-Otim & Damien Hanyurwimfura

International Journal of Computer Science and Security (IJCSS), Volume (11) : Issue (1) : 2017 27

through generating signatures for any newly identified malware. It handles unpacking. The
sample consisted of 15409 malware out of which, their results showed 88.26% were classified as
variants of existing ones and 34.24% were classified as known malware. The combined static and
dynamic analysis in [5] was done on a malicious file called TT.exe which breaks into a system
and performs malicious activities. The advantages of combining both methods have been found
to be beyond preliminary analysis as a malware can deeply be dissected to reveal more of its
functionalities.

Behavioral analysis based on machine learning [10] focused on malware classification and
clustering. 1270 malware samples of different format, namely; pdf, executables, html, zipped,
jpeg, etc. were investigated. Logic Model Tree and K-Means algorithms were used for the task of
classification and clustering respectively. The results show that 18% of analyzed malware were
embedded with networking capabilities to connect to the outer world, while 82% aimed to corrupt
the system locally or network resources. Malware were also grouped successfully according to
their file format types. Comar et. al in [10] combined supervised and unsupervised learning
method to capture packets from a live network connection and use the knowledge of existing
attacks to classify new network flow as either new attack, existing or variants of existing. K-
Nearest Neighbor (K-NN) and Support Vector Machine (SVM) algorithms have been used in the
classification process. 216,899 flows have been captured, out of which 4,394 (2%) were found
malicious and categorized in 38 known malware classes.

Liang et. al, in [11] proposed a novel method to detect variants based on behavioral dependency.
Features were extracted using Temu dynamic analysis software and were customized noise
removal. In their research, Jaccard algorithm was used for similarity calculation. Their
experiments were done using two different malware and six variants of a Trojan malware called
Ghost. Results showed that the two different malware had a weighted similarity of 27%, whereas
the six variants had a strong weighted similarity ranging from 86.16% to 96.2%.

Naidu et. al, in [12] proposed a technique that automatically generates super- signatures to
contain polymorphic malware. They used hexadecimal characteristics as features as well as
Needleman-Wunsch and Smith-Waterman algorithms for string matching. Experiments were
done on multiple variants of “JS.Cassandra” malware and detection rate was 96.59%. Table 1
below, discusses more about different techniques as well as their strengths and limitations.

Technique Characteristics Strengths/Cont
ribution

Limitations

Malware detection by
behavioral sequential

patterns][13]

-Uses API calls based features.
- Random forest and SVM are used for

classification

-Effective in
detecting malware

variants.

-Static features not
considered.

-High rate of False
Positive detections

Malicious data
classification using

structural information
and behavioral
specifications in
executables[8]

-Uses common static and API call
features

-J48 algorithm is used for classification

-Can detect
similarities among
malware samples

-can’t handle anti
analysis features

A Behavior-Based
Malware Variant

Classification
Technique[p70]

-API calls based features are used.
-Weighted similarity among malware
behaviors is calculated using Jaccard

similarity algorithm

-Effective at
detecting similarity

among malware
variants

-Static features not
considered.

-High rate of False
Positive detections

Combining supervised
and unsupervised

learning for zero-day
malware detection[14]

-Network flow based features are
extracted using IDS/IPS

-Uses one class SVM algorithm for
classification.

-Effective at
detecting

polymorphic.
-Can detect new
malware from a
suspicious flow

-Limited to network
based features

- High rate of False
Positive detections

Emmanuel Masabo, Kyanda Swaib Kaawaase, Julianne Sansa-Otim & Damien Hanyurwimfura

International Journal of Computer Science and Security (IJCSS), Volume (11) : Issue (1) : 2017 28

Needleman-Wunsch
and Smith-Waterman

Algorithms for
Identifying Viral

Polymorphic Malware
Variants[12]

-static Hexadecimal based features
are extracted.

- Needleman-Wunsch and Smith-
Waterman Algorithms are used for

creating effective signatures.

-Effective at
generating
appropriate

signatures to
contain

polymorphic
malware.

-only static features
are considered.
-Can have false

positive detections

Proposed solution:
Integrated Feature

Extraction Approach
towards Detection of
Polymorphic Malware

in Executable Files

Comprehensive dissection of malware
using Advanced static analysis and

advanced dynamic analysis as
discussed in Table 2 and 3.

Correlation based feature selection

(CFS) algorithm. CFS helps in creating
good feature subsets that are highly
correlated with the predicted class.

This method is chosen because it is

fast, produces high ranking and
correlated features compared to

alternative methods used in other
techniques. As we’ll have a big feature
set, the accurate automated selection

is also well done with CFS.

K-NN classifier to detect polymorphic
malware with high accuracy.

Comparing to other methods used in
previous methods, K-NN is selected

due to its good performance and
robustness in dealing with large

datasets with many features[15].

This method will
address the
limitations of

previous
techniques by
developing an

approach with the
following

components:
-Detection of
polymorphic

malware with high
accuracy.

-Significantly
minimized false

detection alarms.
-Consideration of
hidden malware
functionalities,

especially
analysis/detection

avoidance
capabilities.
-Increased
detection

performance in
case of large

dataset and many
features.

-Fast detection
process

TABLE 1: Detection Techniques Comparison.

3. METHODOLOGY
3.1 Proposed Detection Approach
The proposed detection approach is illustrated by the flowchart in figure 1. A malware sample is
analyzed using advanced dynamic analysis and advanced static analysis. Dynamic analysis
leads to the extraction of behavioral features. For static analysis a sample is first investigated to
identify packing traces. If it’s packed, it will therefore be unpacked. Once a packet is not packed,
structural features are extracted. All features are combined to make a big feature dataset. These
features will then be filtered to select a reduced dataset which comprises most optimal features
that are relevant for classification task. Lastly, the classification process will be done based on
previously preprocessed features in order to detect polymorphic malware.

Emmanuel Masabo, Kyanda Swaib Kaawaase, Julianne Sansa-Otim & Damien Hanyurwimfura

International Journal of Computer Science and Security (IJCSS), Volume (11) : Issue (1) : 2017 29

Start

Is packed?Unpack

End of

packing?

Combined

extracted features

dataset

Perform

Classification with

Learning algorithm

End

Input Malware

files availed

Verify if the

binary is

packed

Perform Dynamic

Analysis

Perform Static

Analysis

Yes No

Yes

No

Reduced

features subset

Analyze malware

binaries

Extract

behavioral

features

Extract

structural

features

Select

optimal

features

FIGURE 1: The Detection Approach Flowchart.

3.2 Data Collection
We will collect relevant malware samples for researchers collected from online repositories [16]
such as—Open Malware, Malware repository, Malware Samples[16].

3.3 Extraction of Features from Malware Data Samples
Having acquired relevant malware samples, the research seeks to have as more descriptive
information as possible about a given malware through feature extraction. Features are
identification characteristics of malware used to build the detection knowledge. To extract these
features this research will employ a combination of advanced static and advanced dynamic
analysis techniques. Tools to be used are shown in table 2 and the main features to be extracted
are shown in table 3.

Tools Description

PEiD and UPX
For identifying packer and compiler information and regeneration of original

unpacked file.

IDA pro For disassembling the malware binary for further analysis

Process Monitor
For viewing real-time file system, process activity and registry, Network activity,

API calls, Mutex, Self-modifying code traces

Dependency Walker For exploring the Dynamic Link Libraries (DLL) and imported functions.

Regshot To capture and compare registry snapshots to discover any modifications

ApateDNS For controlling DNS requests and response in case of malware network activity

Wireshark: For capture and analyze network traffic

INetSim
for simulating network services such as DNS, HTTP, HTTPS, FTP, IRC,

DNS, SMTP

TABLE 2: Tools and Their Characteristics.

Emmanuel Masabo, Kyanda Swaib Kaawaase, Julianne Sansa-Otim & Damien Hanyurwimfura

International Journal of Computer Science and Security (IJCSS), Volume (11) : Issue (1) : 2017 30

Feature
Strings, DLLs functionality, User defined functions, Self-modifying code traces, Attacker identification,

Exception parameters, Passwords, Anti-debug/analysis constructs, Kernel mode activity, User mode activity,
File activity, Rootkit functionalities, Windows Digital signature, Hooking, Persistence , privilege escalation
attack, DLLs injection, Runtime DLLs, Process replacement functionalities, Entropy, Checksum, API calls,

code noise patterns, File activity, Registry, Service, Mutex, Processes, Network

TABLE 3: Features to be Extracted.

3.4 Feature Selection
Not all features extracted will be relevant for this research. Therefore, after extracting features,
some features with low impact will be removed because they might have a negative impact on the
overall accuracy. Techniques such as Fisher score algorithm [7], correlation based algorithm [14]
and tree based algorithm [17] are good at feature selection process. Fisher score algorithm
selects high ranking features and tree-based feature transformation approach selects and
removes noise from data. Correlation based feature selection (CFS) algorithm helps in creating
good ranking feature subsets that are highly correlated with the predicted class, especially in
case of large feature dataset. CFS is therefore chosen to be used for this research.

Most relevant features will be retained and will be candidate instances of the training dataset.
Relevant features will then form an optimal feature subset to be used in classification. The
advantages of feature selection include:

reduced overfitting (avoiding the worst case scenario in prediction), significant reduction of
training time and improved accuracy. CFS algorithm will be used for selecting optimal features.
The merit of a feature subset S with k features is computed according to equation 1.

 (1)

where is the average value of feature classification correlations, and is the average value

of feature-feature correlations.

CFS will finally be computed according to equation 2

 (2)

, where

 and
 variables are correlations.

3.5 Designing The Detection Approach
This task will mainly consist of building classification models that will optimally generalize the
predictions in detecting polymorphic malware. The choice of a classifier depends on the type of
features, dataset size and also the problem to be solved [15]. Classifiers like Decision Trees (DT)
[15], Support Vector Machines (SVM) and K-nearest neighbor (K-NN) perform well in different
situations [15]. SVM and K-NN are suitable for this research as they can support similarity
function testing for prediction. SVM is suitable to work with few data points because it is slow [15].
K-NN is good for many data points and it is fast [15]. Therefore, to perform classification, the
research proposes to use K-nearest neighbor (K-NN) algorithm [18] because it has the ability to
compute similarities among instances. K-NN will be implemented and customized to meet the
challenges of classification. Distances are calculated between the targeted instance and all other
instances. The shortest distance shows the strongest similarity. When there is a strong similarity,
it is means that there are variants in instances [18]. These variants are signs of polymorphism.
Nearest neighbors will be computed as follows:

Emmanuel Masabo, Kyanda Swaib Kaawaase, Julianne Sansa-Otim & Damien Hanyurwimfura

International Journal of Computer Science and Security (IJCSS), Volume (11) : Issue (1) : 2017 31

1. Let

represents all training examples, where is the number of features and is the

number of instances.
2. Let be the number of nearest neighbors determined beforehand in building (K-NN)

model,

3. Any distance between the targeted instance (

) and all training examples

.

Euclidean distance will be computed as:

 where and (3)

4. Identify all categories of training instances for the sorted values under

3.6 Evaluation and Validation
To evaluate the results, main performance metrics namely True positive (TP), False positive (FP),
True negative (TN), and False negative (FN) will be calculated. True Positive rates (TPR) will give
the percentage of correctly identified as polymorphic samples. False Positive Rates (FPR) will
give the percentage of wrongly identified as polymorphic samples. The overall accuracy of the
model will be calculated based on total number in the sample and those that were correctly
detected as shown in equation 6. Performance metrics are calculated as follows:

 (4)

 (5)

Overall accuracy is the proportion of the total number of predictions that are correct and will be
computed as follows:

 (6)

4. EXPECTED OUTCOME
The expected outcome is a polymorphic malware detection approach that increases overall
detection performance in terms of accuracy and speed. Accuracy is measured by the high rate of
malware correctly identified as polymorphic as well as significantly minimized rate of false
detection alarms. Detection speed will be high due to the optimized feature engineering process.

5. CONCLUSION AND FUTURE WORK
The research is intending to address the issue of polymorphic malware detection. This will be
done by collecting malware samples, analyzing them and extract features using advanced static
and advanced dynamic analyses techniques. Feature selection will be done using Correlation
Feature selection algorithm. Classification will be done using machine learning technique called
K-NN. Evaluation of detection performance will be done based on measuring overall accuracy,
true positive rate as well as false negative rates. Future work will focus, firstly on the
implementation of the proposed approach and provide simulation results; secondly on the
customization of different machine learning algorithms for more optimized higher detection rates.

6. ACKNOWLEDGMENT
We would like to thank the Mobility to Enhance Training of Engineering Graduates in Africa
(METEGA) and the Regional Universities Forum for Capacity Building in Agriculture (RUFORUM)
for financially supporting our research.

7. REFERENCES
[1] Symantec, “015 Internet Security Threat Report,” Internet Security Threat Report, 2015.

[Online]. Available: https://www.itu.int/en/ITU-
D/Cybersecurity/Documents/Symantec_annual_internet_threat_report_ITU2015.pdf.

Emmanuel Masabo, Kyanda Swaib Kaawaase, Julianne Sansa-Otim & Damien Hanyurwimfura

International Journal of Computer Science and Security (IJCSS), Volume (11) : Issue (1) : 2017 32

[2] Lavasoft, “Detecting Polymorphic Malware.” [Online]. Available:
http://www.lavasoft.com/mylavasoft/securitycenter/whitepapers/detecting-polymorphic-
malware. [Accessed: 01-Sep-2016].

[3] A. Sharma and S. K. Sahay, “Evolution and Detection of Polymorphic and Metamorphic
Malwares: A Survey,” International Journal of Computer Applications, vol. 90, no. 2, pp. 7–
11, 2014.

[4] S. K. Pandey and B. M. Mehtre, “A lifecycle based approach for malware analysis,”
Proceedings - 2014 4th International Conference on Communication Systems and Network
Technologies, CSNT 2014, pp. 767–771, 2014.

[5] Y. Prayudi and S. Yusirwan, “the Recognize of Malware Characteristics Through Static and
Dynamic Analysis Approach As an Effort To Prevent Cybercrime Activities,” Journal of
Theoretical and Applied Information Technology (JATIT), vol. 77, no. xx, pp. 438–445, 2015.

[6] M. Sikorski and A. Honig, Practical Malware analysis: The hands-on guide to dissecting
malicious software. San Francisco: No Starch Press, Inc., 2012.

[7] M. Ahmadi, A. Sami, H. Rahimi, and B. Yadegari, “Malware detection by behavioural
sequential patterns,” Computer Fraud & Security, vol. 2013, no. 8, pp. 11–19, 2013.

[8] S. Kumar, C. Rama Krishna, N. Aggarwal, R. Sehgal, and S. Chamotra, “Malicious data
classification using structural information and behavioral specifications in executables,” 2014
Recent Advances in Engineering and Computational Sciences, RAECS 2014, pp. 1–6,
2014.

[9] S. Cesare, Y. Xiang, and W. Zhou, “Malwise-an effective and efficient classification system
for packed and polymorphic malware,” IEEE Transactions on Computers, vol. 62, no. 6, pp.
1193–1206, 2013.

[10] D. Arshi and M. Singh, “Behavior Analysis of Malware Using Machine Learning,” in
Contemporary Computing (IC3), 2015 Eighth International Conference on, 2015, pp. 481–
486.

[11] G. Liang, J. Pang, and C. Dai, “A Behavior-Based Malware Variant Classification
Technique,” International Journal of Information and Education Technology, vol. 6, no. 4, pp.
291–295, 2016.

[12] V. Naidu and A. Narayanan, “Needleman-Wunsch and Smith-Waterman Algorithms for
Identifying Viral Polymorphic Malware Variants,” 2016 IEEE 14th Intl Conf on Dependable,
Autonomic and Secure Computing, 14th Intl Conf on Pervasive Intelligence and Computing,
2nd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology
Congress(DASC/PiCom/DataCom/CyberSciTech), no. August, pp. 326–333, 2016.

[13] M. Ahmadi, A. Sami, H. Rahimi, and B. Yadegari, “Malware detection by behavioural
sequential patterns,” Computer Fraud and Security, vol. 2013, no. 8, pp. 11–19, 2013.

[14] P. M. Comar, L. Liu, S. Saha, P. N. Tan, and A. Nucci, “Combining supervised and
unsupervised learning for zero-day malware detection,” Proceedings - IEEE INFOCOM, pp.
2022–2030, 2013.

[15] J. Park, S. Choi, and D. Y. Kim, “Malware Analysis and Classification: A Survey,” Lecture
Notes in Electrical Engineering, vol. 215, no. April, pp. 449–457, 2013.

[16] L. Zeltser, “Malware sample sources for researchers.” [Online]. Available:
https://zeltser.com/malware-sample-sources. [Accessed: 28-Feb-2016].

Emmanuel Masabo, Kyanda Swaib Kaawaase, Julianne Sansa-Otim & Damien Hanyurwimfura

International Journal of Computer Science and Security (IJCSS), Volume (11) : Issue (1) : 2017 33

[17] V. Kumar and S. Minz, “Feature Selection: A literature Review,” Smart Computing Review,
vol. 4, no. 3, pp. 211–229, 2014.

[18] A. Azab, R. Layton, M. Alazab, and J. Oliver, “Mining malware to detect variants,”
Proceedings - 5th Cybercrime and Trustworthy Computing Conference, CTC 2014, pp. 44–
53, 2015.

