
Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 231 

Dynamic Taint Analysis Tools: A Review 
 
 

Abdullah Mujawib Alashjaee                        alas0145@vandals.uidaho.edu 
a 

Computer Science Department 
University of Idaho 
Moscow, ID, 83844, USA 

b 
Computer Science Department 
Northern Borders University 
Arar, 73222, Saudi Arabia 

 
Salahaldeen Duraibi            dura6540@vandals.uidaho.edu 
a 

Computer Science Department 
University of Idaho 
Moscow, ID, 83844, USA 

b 
Computer Science Department 
Jazan University 
Jazan, 45142, Saudi Arabia 

 

Jia Song                      jsong@uidaho.edu 
Computer Science Department 
University of Idaho 
Moscow, ID, 83844, USA 

 
 

Abstract 
 
Taint analysis is the trending approach of analysing software for security purposes. By using the 
taint analysis technique, tainted tags are added to the data entering from the sensitive sources 
into the applications, then the propagations of the tainted data are monitored carefully. Taint 
analysis can be done in two ways including static taint analysis where analysis is conducted 
without executing the program, and dynamic taint analysis where the tainted data is monitored 
during the program execution. This paper reviews the taint analysis technique, with a focus on 
dynamic taint analysis. In addition, some of the existing taint analysis tools and their application 
areas are reviewed. In the end, the paper summarises the defects associated with each of the 
tools and presents some of them.   
 
Keywords: Taint Analysis, Static Analysis, Dynamic Analysis. 

 
 
1. INTRODUCTION 
Software security analysis is important for testing Commercial off the Shelf (COTS) systems. It 
can be accomplished by employing source code or binary code.  However, source code is not 
available in most of the cases for software security analysis. Hence, binary code analysis is used 
for a number of reasons, including software forensics [1, 2], malware analysis [4], and 
performance analysis and debugging [3]. A number of binary code analysis approaches are in the 
literature, and the most popular ones include symbolic execution, concolic execution, static taint 
analysis and dynamic taint analysis [5].  
 
Capitalizing on the issue of efficiency identified in the fuzzing techniques, symbolic execution, 
which is another conventional binary code analysis approach, has come into being [6]. Different 
from other techniques, such as concrete execution that take concrete input values, symbolic 
execution uses symbols that abstractly represent specified input values for vulnerability analysis 
[7]. However, the technique is suffering from the famous path-explosion problem when 
symbolically executing large programs [8].    



Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 232 

In view of improving the problems identified in symbolic execution, researchers have started 
working on taint analysis. According to Xiajing Wang and colleagues [32], taint analysis has first 
been proposed by Funnywei [75]. Taint analysis works in a triple form manner of source, sink, 
and sanitizer. The source is where some untrusted or confidential input data is introduced to the 
application, probably from the application API or network interface. The sink is the sensitive point 
in the application that performs secure operations, such as sensitive banking transactions, and 
needs to be protected from violation of integrity, confidentiality, and availability of the application. 
Sanitizer refers to the process where the tainted input data is no longer considered harmful to the 
information security of the application by means of removal of harmful operations such as 
malicious programs that may cause the application to function out of its intended operation [7]. In 
short, taint analysis helps software analyzers to take an informed decision on whether the data 
introduced at the input point or source of the application can be allowed to propagate to the sink 
point without harm, or else the application will suffer from some security issues such as data 
leakage or other more dangerous operations such as buffer overflow. 
 
There are two types of taint analysis approaches, Static Taint Analysis (STA) and Dynamic Taint 
Analyses (DTA). In STA, analyzers test an application by examining the intermediate code 
without the execution of the application. Static taint analysis is mostly carried out in a two-step 
manner, including disassembly of the intermediate code and conducting analysis on the resulting 
assembly code [9, 10]. It may sometimes use binary codes for application security analysis. 
However, since source code rarely comes with COTS software, it makes the STA approach 
harder to combat malicious programs, thus reducing its application. Similarly, analyzing binary 
codes with STA approaches have endured complications and challenges [11]. For instance, 
malware with strong evasion techniques can easily escape the STA approach [4]. These 
limitations have motivated the identification of alternative approaches that can overcome such 
defects to analyze applications accurately and reliably.        
       
On the other hand, in DTA, applications are tested during runtime for possible vulnerabilities [12]. 
Both STA and DTA approaches have weaknesses and strengths. For example, when conducting 
information flow analysis in an application, DTA can suffer from runtime overhead which may 
make it fall short of analyzing all the code, causing it not to discover some potential threats. On 
the other hand, since STA analyzes the application code without executing it, it may suffer from 
an accuracy issue. As a result, some researchers proposed tools that mix the two techniques to 
analyze flaws or vulnerabilities in applications [13-15]. Some researchers have used the STA 
approach before or after DTA [15, 16]. In doing so, for example, STA is employed after DTA in 
order to see whether analysis has missed anything suspicious after using DTA. STA can be 
employed before DTA to analyze the behavior of the application prior to the code execution in a 
live environment. 
 
Conducting vulnerability analysis on software in cases where the source code is not available, for 
example,  COTS, software security analysts use the DTA approach as the ideal option [17].    
 
Usually, DTA methods are implemented at the hardware level or code level. For instance, some 
of the DTA methods are implemented within the hardware [18-21]. Although this implementation 
relatively provides the lowest overhead, it is less flexible and the least practical because it 
requires significant architectural and microarchitectural changes to the processor. By using 
source code instrumentation to track the propagation of the tainted data, DTA can also be 
performed at the code level of the software [22-26]. This approach is also less practical since 
source code is hardly available for security analysis in most applications. However, to perform 
data flow tracking without hardware modification or source code, the DTA methods such as Dytan 
[27], Libdft [22], Argos [28], BitBlaze [29], and DTA++ [30] use binary code to perform security 
analysis. This approach is used more prevalently because it enables a wide variety of analysis. 
For this paper, the DTA approaches that use binary code is the focus of interest. This paper is 
aimed at presenting an analytical view of static and dynamic taint tools.  
 



Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 233 

The rest of the paper is organized as follows: Section 2 is the background of the study providing 
basic knowledge of DTA. Section 3 presents a review on several commonly used STA tools, and 
Section 4 presents the review of DTA tools. Section 5 presents lessons learned, and Section 6 
concludes the paper. 

 
2. BACKGROUND 
The primary focus of this paper is on the use of DTA approaches for software security testing. In 
the following subsections, we will provide the readers with the preliminary details for 
understanding the purpose, techniques, and key concerns of the research work of taint analysis. 
Different aspects of DTA are in a general manner summarized in Section 2.1. 
 
2.1 Concepts of Dynamic Taint Analysis Approach  
This section, explains basic concepts about DTA. DTA is also referred to as dynamic information 
flow tracking. The approach is about observing the behaviour of certain untrusted programs as 
they execute in a monitored environment. The central idea of the DTA approach is to label some 
incoming data values as tainted and to propagate them through operands as instructions execute. 
This happens by marking certain values in the CPU registers or memory locations as tainted, and 
observing the tainted data as they propagate during the code execution. A taint propagation 
policy is associated with each instruction to specify whether each output operand should be 
tainted or untainted based on the taint status of the input operands.  
 
2.1.1 Analysis Techniques 
DTA can be accomplished either by control or data flow tracking [1]. Control flow tracking is an 
approach to show how the hierarchical flow of control in a given application is sequenced. It 
makes an easier analysis of all possible execution paths of an application. The output of control 
flow analysis is usually expressed in Control Flow Graphs (CFG), where each instruction or a 
block of instructions is represented by a node and the control flow between two nodes is indicated 
by direct edges. On the other hand, based on the problem that needs to be investigated, DTA 
computes a set of possible values at every point in an application. That is, data flow tracking is for 
monitoring programs from the perspective of how the program processes the data [2]. 
 
2.1.2 Offline and Online Dynamic Taint Analysis 
Dynamic information flow tracking can be performed offline or online. In offline analysis, the trace 
of program execution is recorded into trace files and later analyzed by replaying those trace files. 
In online analysis, the security analysis is conducted by monitoring the program execution. Online 
analysis is considered to be more accurate and easier to implement, but it suffers from slow 
execution [32]. Using traces for later analysis will let analysts get thorough information about what 
has happened, but the raw trace file may become complicated to understand [8]. On the other 
hand, in doing online analysis, incident response can be performed in a timely manner, but it may 
sometimes end up as a false alert [8, 32]. 
 
2.1.3 Modes of Implementation 
Dynamic information flow tracking tools can be implemented at the user or kernel level of an 
operating system. This depends on the type of security matter under investigation and the level of 
information extraction needed for the analysis [3]. For instance, programs such as word 
processing and imaging applications are executed at the user level of operating systems. On the 
other hand, operating systems perform their operations at the kernel level. Hence, DTA tools can 
be developed as targeting either the analysis of the user applications that work at the user level 
or the analysis of the privileged applications that have direct access to the kernel level processes. 
 
2.1.4 Taint Granularity 
The granularity of tracking the application has important implications for the usage of DTA tools. 
In DTA, analysis can be conducted in a fine-grained or coarse-grained manner [34, 35]. In 
coarse-grained information flow, the tainted data is tracked at the granularity of a whole system 
level, while in fine-grained analysis, tainted data is tracked at the granularity at the process level. 



Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 234 

At the data level, data units can be tagged as small as a bit or as large as chunks of memory [35]. 
That is, in coarse-grained analysis, fewer tags are required compared to fine-grained analysis. 
Coarse-grained analysis tools are often easier to design and implement but may inherit trackless 
information causing false alarms [35]. Conversely, by tracking the information flow at the fine 
granularity, the analysis is more flexible and more precise but may require more memory space 
[35]. In most cases, researchers consider one over another believing that, for example, one is 
more effective than the other. However, Vassena et al. argued that both coarse and fine 
granularities are equally important in DTA [34].  
 
2.1.5 Dynamic Binary Instrumentation (DBI) 
Dynamic Binary Instrumentation refers to the analysis of an executable code through injecting 
additional code into the compiled code at runtime. This is usually implemented using a Just-in-
Time (JIT) compiler. In DBI, code is executed in basic blocks, and the code at the end of each 
block is modified so that control is passed to the analysis engine to perform a number of checks, 
such as whether a system call is being executed [6]. Two of the most popular frameworks for 
achieving dynamic instrumentation in Windows are DynamoRIO [7] and Intel Pin [8]. 
 
2.2 Challenges in Dynamic Taint Analysis 
Challenges that DTA has to face when analyzing applications for security can include soundness, 
precision, and overhead. In some papers, these are referred to as over-tainted, under-tainted, 
and overhead [17]. Under-tainted refers to a situation where values expected to be marked as 
tainted are not, while over-tainted occurs when too many values are marked as tainted. For 
instance, tools are still suffering from the issue of accuracy where in some cases taint may 
spread too much or happen to be missing, causing over-tainting or under-tainting  respectively. 
The issue of balancing speed and accuracy is another challenge [8]. DTA tools sometimes cause 
overhead, minimizing the performance of the system [12].  

 
3. STATIC TAINT ANALYSIS TOOLS 
The STA technique is used for application vulnerability testing. There are a number of software 
vulnerability testing tools that utilize STA for deep and exhaustive tracking and prevention of 
suspicious data. In most cases, STA is conducted outside the testing environment, but it provides 
better code coverage analysis compared to DTA [40]. Existing researches employing STA can be 
categorized into three main areas including software privacy analysis [41], software forensics 
[42], web application vulnerability analysis [43, 44, 45, 46].   
 
Conventional privacy-enhancing technologies have fallen short of assessing and auditing the 
privacy of cutting edge technologies. Detailed and often manual examination that is needed for 
these technologies makes privacy assessment a more complex, time-consuming, and tiresome 
task. Taint analysis has recently been used for realtime privacy monitoring of system privacy [41]. 
For instance, Celik et al. present SAINT, a system that can be used by the IoT consumers to 
assess the privacy risks that can come with the adoption of IoT devices [47].  Likewise, in digital 
forensics identifying potential evidence is at the center of any investigation. Evidence 
identification is challenging where only executable code is available; for example, identifying the 
existence of malware at the memory of a system where there is no source code [48]. Fordroid is a 
fully automated forensics tool developed based on the STA approach [42].  
 
Another security area where the STA approach is widely used is web application vulnerability 
analysis. Tripp et al., use an STA in the design and implementation of TAJ to analyze web 
application security vulnerability [49]. TAJ has later been improved into a more scalable and 
precise version called ACTARUS [50]. A method proposed by Kurniawan et al. detects web file 
injection vulnerability in web applications using a PHP parser to traverse abstract syntax trees of 
the source code [51], while the method uses source codes for web application vulnerability 
assessment [52]. F4F makes use of an augmented taint analysis engine that generates a web 
application’s source code in a simple Web Application Framework Language (WAFL) [53]. Tripp 
et al. proposed the most popular Web application security analysis tool called ANDROMEDA [54]. 



Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 235 

 
 

TABLE 1: STA Tools. 

 
Table 1 summarizes and compares the STA tools reviewed in this section. Most of the tools are 
vulnerability mining tools that require source code for the analysis.  

 
4.  DYNAMIC TAINT ANALYSIS TOOLS 

There are a number of research areas where DTA has been used for solving security problems, 
including private data leak detection, application vulnerability detection, malware analysis, and 
forensics [17]. For example, several researchers presented a Privacy Scope approach that uses 
DTA to find application leaks [55]. The approach is believed to be accurate and efficient and is 
implemented at the user environment to help pinpoint information leaks even if the sensitive data 
is encrypted. This approach uses function call summaries to handle taint propagation to reduce 
the overhead of the information flow tracking. In addition, this approach uses on-demand 
instrumentation to enable fast loading and to be able to run on large applications to precisely 
track information. Different from TightLip [56] and Privacy Oracle [57], information leakage 
detecting tools that are limited to applications whose outputs only depend on inputs, Privacy 
Scope can trace multiple input data.  
 
TaintEraser is another DTA tool proposed for the prevention of sensitive data leaks [58]. 
TaintEraser conducts its analysis at the application level to let off-the-shelf application users run 
their applications while preventing unwanted information exposure. Similarly, researchers 
implement the taint propagation within the kernel for a reduced overhead in tracking in which they 
try to achieve near-real-time analysis. TaintEraser uses on-demand instrumentation to enable fast 
loading of large applications, and a semantic-aware instruction-level tainting for increased 
accuracy. The tool is tested with Internet Explorer, Yahoo! Messenger, and Windows Notepad 
where it generated no false positives, precisely preventing user sensitive data that would have 
otherwise been leaked to unwanted channels [58]. TaintEraser uses PIN [58] as a dynamic binary 
translator to accomplish its application-level analysis. The tool supports a simple privacy policy 
whereby a user first specifies sensitive input data to monitor, and subsequently TaintEraser 
blocks any data derived from the sensitive input data from moving to output channels that are 
specified as restricted. In doing so, TaintEraser monitors applications with input data marked 
‘sensitive.’ Once such applications are moving out of the network, TaintEraser would replace 
sensitive bytes in those applications with randomly chosen bytes [58].              
 
Information flow tracking is one of the widely used information leak detection methods for 
smartphones. For instance, TaintDroid is a tool that provides Android smartphone users a means 
of testing whether third-party applications collect and share their private data [59]. TaintDroid 
uses a system-wide information flow tracking to analyze Android apps for data leakage. The 
system is a near-real-time tool and is capable of tracking multiple sources of sensitive data at one 
time. Researchers benchmarked their work with Android’s Activity Manager. It is detected that 
Taintdroid adds 3% overhead. In addition, by employing Taintdroid to monitor the behavior of 30 
Android apps, 68 instances of potential misuse of the users’ private data were detected. At the 
time of its development, according to the authors, TaintDroid was the most effective and efficient 
privacy testing tool for Android apps [59]. In this light, Taindroid is the prime candidate tool that 
can help Android smartphone users make an informed use of third-party applications.       
 

Sources Year Tools Security Focus area Need Source Code Used Platform Automated/Manual Specific Area

[47] 2018 SAINT Data leak (Privacy) YES

SmartThings/ 

OpenHAB/ 

Apple’s HomeKit

automated Commodity IoT

[41] 2018 Fordroid digital forensics YES Android automated Android applications

[49] 2009 TAJ Vulnerability analysis YES Java automated Web Applications

[50] 2011 ACTARUS Vulnerability analysis YES Java automated Web Applications

[53] 2011 F4F Vulnerability analysis YES Java Manual Web Applications

[54] 2013 ANDROMEDA Vulnerability analysis YES Java automated Web Applications



Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 236 

DTA is used for unknown vulnerability detection by looking for misuses of user input during a 
program execution [17]. Vigilante [60] is an end-to-end approach that collaboratively detects 
vulnerability at the end host. The tool runs instrumented software to detect worms at the host and 
broadcasts alerts upon the detection of one. Subsequently, once an alert is broadcasted the host 
automatically generates filters that would block infection of the suspected worm without blocking 
innocuous traffic. With the use of Vigilante, there is no need for trust between hosts because it 
uses a cooperative worm detection mechanism distributed all over the network, thereby making it 
hard for worms to evade from detectors. However, Vigilante requires hosts to run expensive 
detection engines that can spread highly accurate detection loads once a worm is detected over 
the network.  
 
Lift [61] is another vulnerability detecting approach with a low-overhead information flow tracking 
mechanism. The tool is generic in the sense that it does not only target specific vulnerability 
exploits such as worm, buffer overflow, format string, etc. Rather, Lift is a software-only approach 
that exploits dynamic binary instrumentation and optimizations for detecting various types of 
security attacks. Likewise, Lift is more specific in selecting tag propagation paths because it 
eliminates unnecessary tracking, coalesces information checks, and efficiently switches between 
target programs and instrumented information flow tracking code. The tool is implemented on 
StarDBT [61], a dynamic binary translator, on Windows experimenting web applications from 
server and client sides. Compared to previous works, the tool shows relatively better results [61].   
 
Newsome and Song propose another host-based DTA tool that automatically detects Format 
String and Overwrite attacks exploits on commodity software [62]. These researchers referred to 
their tool as TaintCheck. TaintCheck has been employed in testing a number of programs and 
turned out to not have false positives for any of the programs. Likewise, TaintCheck enables an 
automatic semantic analysis to generate a signature for attack filtering after an exploited attack 
has been detected.  
 
Previous studies focused on the use of DTA for securing centralized software. However, 
implementing such tools to distributed systems have raised issues of applicability, tool portability 
and analysis scalability [63]. Hence, the development of dedicated DTA tools that can be used for 
distributed systems is sought to be necessary. DistTaint, an application-level dynamic taint 
analyzer, is proposed for this aspect [64, 65]. However, the tool uses Java source code for its 
analysis.  
 
Some researchers have taken one step beyond and have tried to secure cloud computing with 
DTA tools. For example, Papagiannis and Pietzuch proposed CloudFilter [66], a DTA tool that 
allows a cloud consuming organization to have control of its sensitive data and not be leaked to 
the cloud without its consent. CloudFilter intercepts file transfers between the consumer 
organization and cloud services, and subsequently performs logging and enforces propagation 
policies. Similarly, the tool controls where files propagate after they have been uploaded to the 
cloud and ensure that only authorized users may gain access to them. The researchers 
successfully applied CloudFilter to Dropbox and GSS whereby they were able to control the data 
propagation [66].  
 
CloudFence is another data flow tracking service model [67] that monitors data leaks in cloud 
services. Researchers propose the tool to be hosted by the cloud providers for consumers to 
independently audit their data residing in that same cloud. The tool can also give cloud brokering 
companies to confine the propagation of sensitive data of their customers within well-defined 
domains. CloudFence is based on runtime binary instrumentation that supports byte-level data 
tagging and uses PIN as a dynamic binary translator. Similarly, CloudFence enables fine-grained 
data tracking for up to four billion users. To evaluate the effectiveness and practicality of the tool, 
the researchers implemented a CloudFence prototype using two publicly disclosed data leakage 
vulnerabilities in two real-world applications. Compared to the DTA tools Libdft and SiteBar; 
CloudFence shows a runtime overhead which is comparable to that of Libdft and larger 
performance impact in comparison to SiteBar.    



Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 237 

Some researchers have amazingly employed dynamic information flow tracking for forensics 
readiness purpose, where system call level logging is conducted in order to ease “after-the-myth” 
investigation of attacks. For instance in one of the latest developments of this aspect, researchers 
proposed Rain, an attack investigation system, which uses a record-replay technology to record 
system-call events during runtime [68]. The system has the ability to perform instruction-level 
DTA that can filter out processes unrelated to the case to minimize the number of processes to 
be investigated for attack causality accuracy. In previous works, for example, Xiao et al. proposes 
PoL-DFA, a forensic system that can log the execution traces of the processes being monitored 
for investigating applications data leakage and contamination. Likewise, Sun and Oliveira 
propose an IoT forensics framework DDIFT [70] that uses a DTA module running in the IoT 
system controlling a mobile device, a forensics analysis module running in the cloud, and 
distributed optimization to conduct a decentralized forensic analysis of IoT applets.   
 
One of the research areas where the DTA approach is exhaustively used is in dynamic malware 
analysis. The use of DTA is preferred for malware analysis because it is not easily defeated by 
techniques such as obfuscation and polymorphism. In this paper, we will review some of the most 
popular Malware analysis tools developed based on the DTA approach. Some malware analysis 
tools such as Panorama [71] and Ether [72] use hardware instrumentation. These types of 
malware analysis tools are not in our scope and therefore were not studied in this paper. 
However, TQana is an internet explorer browser plug-in tool that uses binary instrumentation for 
the analysis of malicious codes [73]. TQana performs at the kernel level to monitor all calls made 
by the malware. It observes both the functional behavior and information traces of the malware 
execution. Whenever a URL is entered into the address bar of the internet explorer, TQana 
implements information flow tracking using the Navigate event of the web browser which in turn 
introduces taints to the system. Another binary instrumentation based malware analysis tool is 
Cloudtaint [74]. Cloudtaint uses elastic taint tracking based on data flow tracking as well as 
control flow for malware detection of cloud-based applications. One of the best-known analysis 
tools developed based on the DTA approach is Dyton [27]. Dyton uses PIN for binary 
instrumentation providing an API where its user can configure the source and the sink to track the 
control of the information flow.  
 
Tables 2 (a) and (b) show a summary of the DTA based tools reviewed in this paper. In tables 2 

(a) and (b), the sign (✓) shows the existence or use of the parameter, listed in the tables, by the 

tools. In cases where cells are left blank, the corresponding parameter is neither used nor 
discussed in the papers reporting about the tools.  

 
5.  COMPARATIVE DISCUSSION 

In tables 2 (a) and (b), the tools were comparatively analyzed for their employment of certain 
parameters. For instance, starting from the left, the tools were evaluated based on their area of 
focus. Of the 15 DTA based tools reviewed in this paper, 5 were for analyzing data leaks. In the 
literature of DTA, some researchers were categorically referring DTA based tools as data privacy 
suitable tools. So no wonder that most of the reviewed tools are dedicated to data leak analysis. 
The application of DTA based tools towards digital forensics is now getting the momentum. Three 
of the 15 reviewed tools are developed for digital forensics. Starting from its early days the DTA 
approach was used for malware analysis. Some DTA tools are generic in a way that they are not 
specific for their implementation area. For example, tools such as Vigilante, Lift, TaintCheck, and 
DistTaint are in general for application vulnerability analysis.  
 
The tools were also evaluated for the type of analysis techniques they followed. The four columns 
under the analysis techniques section of Table 2 (a) show that most tools explicitly follow the data 
flow tracking analysis method. A good Handful of the tools including, Vigilante, Lift, DistTaint, 
Rain, DDIFT, TQama, CloudTaint, and Dyton, use both dataflow and control-flow for their 
analysis. Usually, tools that track data at a fine-grained level have shown law performance 
compared to those performing tracking at a coarse-grained level. However, 9 out of the 15 tools 
reviewed have implemented tracking at data or process (fine-grained) level analysis. Likewise, in 



Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 238 

Table 2 (a), the binary instrumentation tool used in each of the tools is depicted in the DBI tools 
column. Some the tools do not specify which binary instrumentation tool they employ. However, 
undeniable number of tools have used the most popular binary instrumentation tool PIN. That is, 
PIN is a good candidate for any prospected DTA tools.  
   
In Table 2 (b), we evaluated the mode of the tools’ implementations. Usually, DTA tools perform 
their analysis at the user or/and kernel levels of the operating system. Only 4 tools can conduct 
analysis at both user and kernel levels, while the remaining 11 tools do analysis at the user or 
kernel levels. In Table 2 (b), the soundness, precision, and performance of each of the tools are 
evaluated. We could hardly grab soundness of the tools because most of the researchers did not 
discuss in the relative papers. However, only have shown interest in indicating the soundness of 
the tools. We mostly based our evaluation on the literature, particularly what other researchers 
have said about the tools. As a result, most of fine-grained tools have shown high overhead. 
Furthermore, we have studied what kind of environment the model has been implemented. As 
indicated in the last two columns of Table 2 (b) most of the tools are implemented in virtualized 
environments.      

              

 
 

TABLE 2 (a): Dynamic Taint Analysis Tools. 

 

 
 

TABLE 2 (b): Dynamic Taint Analysis Tools. 

 
6.  LESSONS LEARNED 

Based on our review and current status of the DTA tools, it is believed that there is an urgent 
need of designing DTA based vulnerability analysis tools with a reduced false reporting rate. On 
the other hand, such tools may optimize the efficiency of the DTA by selectively controlling the 



Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 239 

number of taints to be spread for each analysis. This can be accomplished by removing 
unnecessary taints from the system.  
 
In addition, the DTA tools in the literature can only detect some specific vulnerabilities. Hence, the 
development of a generic tool that combines existing techniques in order to detect myriad security 
vulnerabilities will be a value add to the domain. The literature is also lacking tools that can 
analyze inter-applications or inter-systems data leaks.     
 
Adopting DTA to the analysis of cutting edge technology is also lagging behind. There are only a 
number of tools that have been applied to cloud computing and IoT environments. Worth 
mentioning is that none of these tools focused on the vulnerability analysis of cloud or IoT 
applications. Some focused on data leak detection while others were for either digital forensics or 
malware analysis. The primary reason why the vulnerability analysis DTA based tools are not 
extended to cloud and IoT technologies is because of the infancy of the two areas. Other reasons 
may include the heterogeneous nature of devices and applications involved in cloud and IoT 
technologies. Furthermore, how data is distributed, aggregated and processed in cloud and IoT 
technologies may pose challenges in the data flow tracking. Particularly, different types of IoT 
technologies, Operating systems, and network protocols from different vendors make it hard 
implementation of DTA tools to the IoT ecosystem.       

 
6.  CONCLUSION  

In this paper, taint analysis tools have been studied. At first, different areas where the taint 
analysis approach is implemented are discussed. Subsequently, a brief overview of the STA and 
a number of tools that have been developed based on STA are presented. Likewise, the section 
about DTA is starting with the basics and definitions to consequently build on the description of 
the tools and frameworks in the literature. A number of DTA based tools are thoroughly reviewed. 
Their areas of implementation were studied together with the shortcomings reported in each of 
the tools. A deeper understanding of the DTA approach and the effective adaption of its tools will 
have an improving effect on software security analysis.       

 
7.  REFERENCES 
[1] D Zou, J Zhao, W Li, Y Wu, W Qiang., "A Multigranularity Forensics and Analysis Method on 

Privacy Leakage in Cloud Environment." IEEE Internet of Things Journal, 2018. 6(2): p. 

1484-1494. 

[2] A.N. Moussa, N. Ithnin, and A. Zainal, "CFaaS: bilaterally agreed evidence collection." 

Journal of Cloud Computing, 2018. 7(1): p. 1. 

[3] X. Meng, and B.P. Miller. "Binary code is not easy." in Proceedings of the 25th International 
Symposium on Software Testing and Analysis. 2016. ACM. 

[4] M. Shudrak, and V. Zolotarev. "The technique of dynamic binary analysis and its application 
in the information security sphere." in Eurocon 2013. 2013. IEEE. 

[5] C Chen, B Cui, J Ma, R Wu, J Guo, W Liu. "A systematic review of fuzzing techniques." 

Computers & Security, 2018. 75: p. 118-137. 

[6] R Baldoni, E Coppa, DC D'elia, C Demetrescu. "A survey of symbolic execution techniques." 

ACM Computing Surveys (CSUR), 2018. 51(3): p. 50. 

[7] Z Feng, Z Wang, W Dong. "Bintaint: A STA Method for Binary Vulnerability Mining." in 2018 
International Conference on Cloud Computing, Big Data and Blockchain (ICCBB). 2018. 

IEEE. 

[8] J Cai, P Zou, J Ma, J He. "Sworddta: A dynamic taint analysis tool for software vulnerability 
detection." Wuhan University Journal of Natural Sciences, 2016. 21(1): p. 10-20. 

https://scholar.google.com/citations?user=82tR6VoAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=cJrM-6IAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=At-spOYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=uqX964EAAAAJ&hl=en&oi=sra


Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 240 

[9] K. Liu, H.B.K. Tan, and X. Chen, "Binary code analysis. Computer," 2013. 46(8): p. 60-68. 

[10] C. Cadar, D. Dunbar, and D.R. Engler. "KLEE: Unassisted and Automatic Generation of 
High-Coverage Tests for Complex Systems Programs." in OSDI. 2008. 

[11] W. Aman, "A framework for analysis and comparison of dynamic malware analysis tools." 

arXiv preprint arXiv:1410.2131, 2014. 

[12] J. Kim, T. Kim, and E.G. Im. "Survey of dynamic taint analysis." in 2014 4th IEEE 
International Conference on Network Infrastructure and Digital Content. 2014. IEEE. 

[13] E Zhu, X Li, F Liu, X Li, Z Ma. "Constructing a hybrid taint analysis framework for diagnosing 
attacks on binary programs." Journal of Computers, 2014. 9(3): p. 566-575. 

[14] M Ahmad, V Costamagna, B Crispo "TeICC: targeted execution of inter-component 
communications in Android." in Proceedings of the Symposium on Applied Computing. 

2017. ACM. 

[15] M. Monga, R. Paleari, and E. Passerini. "A hybrid analysis framework for detecting web 
application vulnerabilities." in Proceedings of the 2009 ICSE Workshop on Software 
Engineering for Secure Systems. 2009. IEEE Computer Society. 

[16] A. Getman, V. Padaryan, and M. Solovyev. "Combined approach to solving problems in 
binary code analysis". in Proceedings of 9th International Conference on Computer Science 
and Information Technologies (CSIT’2013). 2013. 

[17] P. Dai, Z. Pan, and Y. Li. "A Review of Researching on Dynamic Taint Analysis Technique." 
in 2018 3rd Joint International Information Technology, Mechanical and Electronic 
Engineering Conference (JIMEC 2018). 2018. Atlantis Press. 

[18] S Chen, J Xu, N Nakka, Z Kalbarczyk. "Defeating memory corruption attacks via pointer 
taintedness detection." in 2005 International Conference on Dependable Systems and 

Networks (DSN'05). 2005. IEEE. 

[19] GE Suh, JW Lee, D Zhang, S Devadas. "Secure program execution via dynamic information 
flow tracking." in ACM Sigplan Notices. 2004. ACM. 

[20] G Venkataramani, I Doudalis, Y Solihin. "Flexitaint: A programmable accelerator for dynamic 
taint propagation." in 2008 IEEE 14th International Symposium on High Performance 
Computer Architecture. 2008. IEEE. 

[21] J Shin, H Zhang, J Lee, I Heo, YY "Chen A hardware-based technique for efficient implicit 
information flow tracking." in 2016 IEEE/ACM International Conference on Computer-Aided 
Design (ICCAD). 2016. IEEE. 

[22] VP Kemerlis, G Portokalidis, K Jee, AD Keromytis. "libdft: Practical dynamic data flow 
tracking for commodity systems." in Acm Sigplan Notices. 2012. ACM. 

[23] W. Xu, S. Bhatkar, and R. Sekar. "Taint-Enhanced Policy Enforcement: A Practical 
Approach to Defeat a Wide Range of Attacks." in USENIX Security Symposium. 2006. 

[24] V. Ganesh, T. Leek, and M. Rinard. "Taint-based directed whitebox fuzzing." in Proceedings 
of the 31st International Conference on Software Engineering. 2009. IEEE Computer 
Society. 

[25] TR Leek, GZ Baker, RE Brown, MA Zhivich, "Coverage maximization using dynamic taint 
tracing." 2007, MASSACHUSETTS INST OF TECH LEXINGTON LINCOLN LAB. 

https://scholar.google.com/citations?user=8f9H-cUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=exvMi3YAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=neO3vFYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=PA-QN6IAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=QIFXp1IAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=-yrzguMAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=XarUylkAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=tndlIesAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=sXEIhhUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=zRT97ucAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=tkb2YWQAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=pGz5U34AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=x-ApqMUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=mncyWbcAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=3Vu-f5AAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=mAvz2YMAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=cGztrWkAAAAJ&hl=en&oi=sra


Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 241 

[26] R Wang, G Xu, X Zeng, X Li, Z Feng TT-XSS: A novel taint tracking based dynamic 
detection framework for DOM Cross-Site Scripting. Journal of Parallel and Distributed 

Computing, 2018. 118: p. 100-106. 

[27] J. Clause, W. Li, and A. Orso. "Dytan: a generic dynamic taint analysis framework." in 
Proceedings of the 2007 international symposium on Software testing and analysis. 2007. 
ACM. 

[28] G. Portokalidis, A. Slowinska, and H. Bos."Argos: an emulator for fingerprinting zero-day 
attacks for advertised honeypots with automatic signature generation." in ACM SIGOPS 
Operating Systems Review. 2006. ACM. 

[29] D Song, D Brumley, H Yin, J Caballero, I Jager "BitBlaze: A new approach to computer 
security via binary analysis." in International Conference on Information Systems Security. 

2008. Springer. 

[30] MG Kang, S McCamant, P Poosankam, D Song Dta++: dynamic taint analysis with targeted 

control-flow propagation. in NDSS. 2011. 

[31] L Li, TF Bissyandé, M Papadakis, S Rasthofer. "Static analysis of android apps: A 
systematic literature review." Information and Software Technology, 2017. 88: p. 67-95. 

[32] X Wang, R Ma, B Dou, Z Jian, H Chen, "OFFDTAN: A New Approach of Offline Dynamic 
Taint Analysis for Binaries." Security and Communication Networks, 2018. 2018. 

[33] M Nunes, P Burnap, O Rana, P Reinecke, "Getting to the root of the problem: A detailed 
comparison of kernel and user level data for dynamic malware analysis" Journal of 

Information Security and Applications, 2019. 48: p. 102365. 

[34] M Vassena, A Russo, D Garg, V Rajani, "From fine-to coarse-grained dynamic information 
flow control and back." Proceedings of the ACM on Programming Languages, 2019. 

3(POPL): p. 76. 

[35] H. Yin, and D. Song, "Whole-system Fine-grained Taint Analysis for Automatic Malware 
Detection and Analysis." Technical paper. College of William and Mary & Carnegie Mellon 
University, 2006. 

[36] M Polino, A Continella, S Mariani, S D'Alessio Measuring and defeating anti-instrumentation-
equipped malware. in International Conference on Detection of Intrusions and Malware, and 
Vulnerability Assessment. 2017. Springer. 

[37] D. Bruening, E. Duesterwald, and S. Amarasinghe. Design and implementation of a dynamic 
optimization framework for Windows. in 4th ACM Workshop on Feedback-Directed and 
Dynamic Optimization (FDDO-4). 2001. 

[38] CK Luk, R Cohn, R Muth, H Patil, A Klauser. "Pin: building customized program analysis 
tools with dynamic instrumentation." in Acm sigplan notices. 2005. ACM. 

[39] L.K. Yan, and H. Yin, "SoK: On the Soundness and Precision of Dynamic Taint Analysis." 

[40] D. Boxler, and K.R. Walcott. STA Tools to Detect Information Flows. in Proceedings of the 
International Conference on Software Engineering Research and Practice (SERP). 2018. 

The Steering Committee of The World Congress in Computer Science, Computer …. 

[41] M. von Maltitz, C. Diekmann, and G. Carle. Privacy Assessment Using STA (Tool Paper). in 
International Conference on Formal Techniques for Distributed Objects, Components, and 
Systems. 2017. Springer. 

https://scholar.google.com/citations?user=lk90G3wAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=84WzBlYAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=O-29z5AAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=_1VlI00AAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=ldSJoRUAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=T8qbA4MAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=xx3cu9EAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=rVIZtNcAAAAJ&hl=en&oi=sra
https://scholar.google.com/citations?user=84WzBlYAAAAJ&hl=en&oi=sra


Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 242 

[42] X Lin, T Chen, T Zhu, K Yang, F Wei "Automated forensic analysis of mobile applications on 

Android devices." Digital Investigation, 2018. 26: p. S59-S66. 

[43] Z Xing, Z Bin, F Chao, Z Quan "Staticly Detect Stack Overflow Vulnerabilities with Taint 
Analysis." in ITM Web of Conferences. 2016. EDP Sciences. 

[44] C. Feng, and X. Zhang. A Static Taint Detection Method for Stack Overflow Vulnerabilities in 
Binaries. in 2017 4th International Conference on Information Science and Control 
Engineering (ICISCE). 2017. IEEE. 

[45] F. Pauck, and H. Wehrheim. Together strong: cooperative Android app analysis. in 
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering 
Conference and Symposium on the Foundations of Software Engineering. 2019. ACM. 

[46] S Arzt, S Rasthofer, C Fritz, E Bodden, A Bartel "Flowdroid: Precise context, flow, field, 
object-sensitive and lifecycle-aware taint analysis for android apps." in Acm Sigplan Notices. 

2014. ACM. 

[47] ZB Celik, L Babun, AK Sikder, H Aksu, G Tan "Sensitive information tracking in commodity 
IoT." in 27th {USENIX} Security Symposium ({USENIX} Security 18). 2018. 

[48] N. Rosenblum, X. Zhu, and B.P. Miller. Who wrote this code? identifying the authors of 
program binaries. in European Symposium on Research in Computer Security. 2011. 

Springer. 

[49] O Tripp, M Pistoia, SJ Fink, M Sridharan, TAJ: effective taint analysis of web applications. 

ACM Sigplan Notices, 2009. 44(6): p. 87-97. 

[50] S Guarnieri, M Pistoia, O Tripp, J Dolby Saving the world wide web from vulnerable 
JavaScript. in Proceedings of the 2011 International Symposium on Software Testing and 
Analysis. 2011. ACM. 

[51] A Kurniawan, BS Abbas, A Trisetyarso STA Traversal with Object Oriented Component for 
Web File Injection Vulnerability Pattern Detection. Procedia Computer Science, 2018. 135: 

p. 596-605. 

[52] M.L. Minsky, Computation. 1967: Prentice-Hall Englewood Cliffs. 

[53] M Sridharan, S Artzi, M Pistoia, S Guarnieri F4F: taint analysis of framework-based web 
applications. in ACM SIGPLAN Notices. 2011. ACM. 

[54] O Tripp, M Pistoia, P Cousot, R Cousot Andromeda: Accurate and scalable security analysis 
of web applications. in International Conference on Fundamental Approaches to Software 
Engineering. 2013. Springer. 

[55] Y Zhu, J Jung, D Song, T Kohno, D Wetherall, Privacy scope: A precise information flow 
tracking system for finding application leaks. 2009, Citeseer. 

[56] A.R. Yumerefendi,, B. Mickle, and L.P. Cox. TightLip: Keeping Applications from Spilling the 
Beans. in NSDI. 2007. 

[57] J Jung, A Sheth, B Greenstein, D Wetherall "Privacy oracle: a system for finding application 
leaks with black box differential testing." in Proceedings of the 15th ACM conference on 
Computer and communications security. 2008. ACM. 

[58] DY Zhu, J Jung, D Song, T Kohno, TaintEraser: Protecting sensitive data leaks using 
application-level taint tracking. ACM SIGOPS Operating Systems Review, 2011. 45(1): p. 

142-154. 



Abdullah Mujawib Alashjaee, Salahaldeen Duraibi & Jia Song 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 243 

[59] W Enck, P Gilbert, S Han, V Tendulkar TaintDroid: an information-flow tracking system for 
realtime privacy monitoring on smartphones. ACM Transactions on Computer Systems 

(TOCS), 2014. 32(2): p. 5. 

[60] M Costa, J Crowcroft, M Castro, A Rowstron Vigilante: End-to-end containment of internet 
worms. in ACM SIGOPS Operating Systems Review. 2005. ACM. 

[61] F Qin, C Wang, Z Li, H Kim, Y Zhou "Lift: A low-overhead practical information flow tracking 
system for detecting security attacks." in 2006 39th Annual IEEE/ACM International 
Symposium on Microarchitecture (MICRO'06). 2006. IEEE. 

[62] J. Newsome, and D.X. Song. Dynamic Taint Analysis for Automatic Detection, Analysis, and 
SignatureGeneration of Exploits on Commodity Software. in NDSS. 2005. Citeseer. 

[63] X Wang, H Ma, K Yang, H Liang "An Uneven Distributed System for Dynamic Taint Analysis 
Framework." in 2015 IEEE 2nd International Conference on Cyber Security and Cloud 
Computing. 2015. IEEE. 

[64] X. Fu, and H. Cai." A dynamic taint analyzer for distributed systems." in Proceedings of the 
2019 27th ACM Joint Meeting on European Software Engineering Conference and 
Symposium on the Foundations of Software Engineering. 2019. ACM. 

[65] X. Fu, "On the scalable dynamic taint analysis for distributed systems." in Proceedings of the 
2019 27th ACM Joint Meeting on European Software Engineering Conference and 
Symposium on the Foundations of Software Engineering. 2019. ACM. 

[66] I. Papagiannis, and P. Pietzuch. "Cloudfilter: practical control of sensitive data propagation 
to the cloud." in Proceedings of the 2012 ACM Workshop on Cloud computing security 
workshop. 2012. ACM. 

[67] V Pappas, VP Kemerlis, A Zavou CloudFence: Data flow tracking as a cloud service. in 
International Workshop on Recent Advances in Intrusion Detection. 2013. Springer. 

[68] Y Ji, S Lee, E Downing, W Wang, M Fazzini "Rain: Refinable attack investigation with on-
demand inter-process information flow tracking." in Proceedings of the 2017 ACM SIGSAC 
Conference on Computer and Communications Security. 2017. ACM. 

[69] G Xiao, J Wang, P Liu, J Ming, D Wu  "Program-object level data flow analysis with 
applications to data leakage and contamination forensics." in Proceedings of the Sixth ACM 
Conference on Data and Application Security and Privacy. 2016. ACM. 

[70] N. Sapountzis, R. Sun, and D. Oliveira. "DDIFT: Decentralized Dynamic Information Flow 
Tracking for IoT Privacy and Security." in Workshop on Decentralized IoT Systems and 
Security (DISS). 2018. 

[71] H Yin, D Song, M Egele, C Kruegel "Panorama: capturing system-wide information flow for 
malware detection and analysis." in Proceedings of the 14th ACM conference on Computer 
and communications security. 2007. ACM. 

[72] A Dinaburg, P Royal, M Sharif, W Lee "Ether: malware analysis via hardware virtualization 
extensions." in Proceedings of the 15th ACM conference on Computer and communications 
security. 2008. ACM. 

[73] M Egele, C Kruegel, E Kirda, H Yin, D Song. "Dynamic spyware analysis." 2007. 

[74] J Yuan, W Qiang, H Jin, D Zou. "CloudTaint: an elastic taint tracking framework for malware 
detection in the cloud." The Journal of Supercomputing, 2014. 70(3): p. 1433-1450. 

[75] Funnywei, “Bufer Overfow Vulnerability Mining Model [Z/OL],” 2003,           
http://xcon.xfocus.net/XCon2003/archives/ Xcon2003 funnywei.pdf. 


