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Abstract 
 
In the software development life cycle (SDLC), testing is an important step to reveal and fix the 
vulnerabilities and flaws in the software. Testing commercial off-the-shelf applications for security 
has never been easy, and this is exacerbated when their source code is not accessible. Without 
access to source code, binary executables of such applications are employed for testing. Binary 
analysis is commonly used to analyze on the binary executable of an application to discover 
vulnerabilities. Various means, such as symbolic execution, concolic execution, taint analysis, 
can be used in binary analysis to help collect control flow information, execution path information, 
etc. This paper presents the basics of the symbolic execution approach and studies the common 
tools which utilize symbolic execution in them. With the review, we identified that there are a 
number of challenges that are associated with the symbolic values fed to the programs as well as 
the performance and space consumption of the tools. Different tools approached the challenges 
in different ways, therefore the strengths and weaknesses of each tool are summarized in a table 
to make it available to interested researchers. 
 
Keywords: Symbolic Execution, Concrete Execution, Concolic Execution, Binary Analysis. 

 
 
1. INTRODUCTION 

In cases where applications are analyzed for defects and source code is not available, software 
analysts have to conduct analysis at the binary code level of the application. Engaging binary 
code for software analysis is referred to as binary analysis. It is commonly used for error 
identification, reverse engineering, and security analysis. In addition, binary analysis is well 
known for its use for discovering vulnerabilities in software, and this paper focuses on that aspect 
of the binary analysis. To reveal vulnerabilities, disassembly of the binary executable needs to be 
done first and then the vulnerability patterns, such as buffer overflow, can be recognized. 
  
Conducting binary analysis is challenging, because a great deal of useful information, such as 
symbolic information, data types, program structures, is not carried to the binary code. What is 
more, in the early days of using binary code analysis, analysts used to have difficulty 
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distinguishing between data and code in binary, because data fragments and executable code 
are mixed in the binaries [1]. Therefore, researchers in the domain of software testing have 
proposed a number of binary analysis techniques, including taint analysis, symbolic execution, 
and concolic execution.  
 
Taint analysis is used for information flow tracking, data entering from some specific sources 
such as user input, application APIs or network interfaces are marked as tainted (untrusted). 
Then the propagations of the tainted data are tracked throughout the program and the uses of the 
tainted data are carefully checked. There are two ways of performing taint analysis, static taint 
analysis and dynamic taint analysis. Static taint analysis tools usually conduct the analysis in a 
controlled environment where the data are monitored before run time [2]. Tools developed based 
on static taint analysis can offer better code coverage in their analysis compared to dynamic taint 
analysis [2]. However, such tools suffer in that they cannot detect runtime security defects of 
applications. Static taint analysis can be used for different aspects of security analysis including 
data leak analysis [3], digital forensics [4], web application vulnerability analysis [5, 6]. On the 
other hand, dynamic taint analysis is a principled approach for tracking information flow during 
program execution. Different from the static taint analysis that needs for its analysis to run in a 
confined environment, dynamic taint analysis usually conducts analysis when the application is 
running in its intended environment. Moreover, dynamic taint analysis can be implemented within 
the hardware level of a system to conduct analysis [7-10], or at the software stack by either using 
the source code [11-15] or binary code [16]. However, since dynamic taint analysis conducts 
applications security analysis at the runtime, it can only find flows that are executed. Hence, it has 
less code coverage compared to the static taint analysis [2].  
 
Symbolic execution remains one of the favored techniques when it comes to error detections [17].  
It is usually used for testing applications for defects and security matters [18]. Symbolic execution 
has been proposed as a solution to the concrete execution that explores a specific actual data 
input and a single control flow path at a time. Instead in symbolic execution, a program is 
explored for the different paths it can take when fed with different inputs. To that end, to 
accomplish this, symbolic execution does not take actual data as input, rather, it uses symbolic 
input values. As a result, the output is given as a function of the symbolic value and is considered 
as a sound analysis compared to the concrete. Symbolic execution has suffered from execution 
path explosion for large or complex programs [19].  
 
Hence, in order to mitigate the path explosion issue, concolic execution is proposed. Concolic 
execution combines concrete execution and symbolic execution in order to overcome inherent 
defects identified in the symbolic execution including path explosion and handling calls to native 
libraries [20]. That is, the program is executed on some concrete input values provided by the 
analyst and then symbolic path constraints are generated for that specific execution. Concolic 
execution was first proposed in 2001 by Eric Larson and Todd Austin [21].  
 
The rest of the paper is organized as follows: Section 2 is the background of the study providing 
basics of how symbolic execution works. The studies of different symbolic execution tools are 
presented in Section 3. Section 4 discusses the lessons learned from reviewing the common 
tools, and Section 5 concludes the paper. 

 
2. BACKGROUND 

Conventionally, symbolic execution is used for analyzing sequential programs with integer 
variables [22]. Symbolic Execution uses symbolic values as input data rather than actual data and 
symbolic expressions as program variables. Different from the concrete execution approach that 
tests programs on specific input with a single control flow path, symbolic execution rather tests 
programs with different inputs against multiple execution paths. In symbolic execution, programs 
are fed with symbolic values instead of concrete input values [23]. The approach uses an 
execution engine that collects a set of constraints combined and formulas across each explored 
path. Once instructions are evaluated the formula is updated accordingly. The execution forks 



Salahaldeen Duraibi, Abdullah Mujawib Alashjaee & Jia Song 

 

International Journal of Computer Science and Security (IJCSS), Volume (13) : Issue (6) : 2019 246 

when a branching instruction is encountered. A constraint solver - typically one suited for 
satisfiability modulo theories (SMT) - is used to evaluate expressions involving symbolic values, 
as well as for generating concrete inputs that can be used to run the program concretely along 
the desired path [24]. 

 

FIGURE 1: Code that swaps two integers and the corresponding symbolic execution tree [20]. 

 
The state of the symbolically executed program is usually depicted in a symbolic execution tree 
that shows the execution paths the input followed during the analysis. The nodes of the tree are 
the states of the program. Each execution path between states is represented by an arc labelled 
with a transition number. For example, in Figure 1, the code segment which swaps the value of 
integer variables x and y is shown to the left of the figure. A corresponding symbolic execution 
tree can be built and is depicted on the right of Figure 1. According to the symbolic execution 
tree, in the initial path condition, x and y have the symbolic values X and Y. In each transition, 
based on the input values, the path condition is updated. Following the execution of the initial 
statement, both ‘then’ and ‘else’ alternatives of the ‘if’ statement are possible, and the path 
condition is updated accordingly. Where inputs do not satisfy the path condition (false), it means 
the symbolic state of the program is not reachable, and as a result, the symbolic execution will 
not continue for that path of the program. For instance, statement number six (6) is unreachable 
in the symbolic execution tree in Figure 1.  
 
In order to perform symbolic execution analysis, the program has to exercise a large set of paths 
through its execution tree that is because whenever more paths are explored, the higher the 
coverage of examined codes. Nevertheless, such an enumeration of execution paths is 
computationally expensive. Traditionally symbolic execution uses exhaustive exploration of the 
possible execution paths. However, this makes the analysis process to remain applicable only to 
small applications, causing analysts to aim for less ambitious goals. Having said that, a number of 
approaches that can ease the process of path exploration are employed by most of the recent 
symbolic execution tools. For example, some researchers proposed standard model checking 
tools for Java programs in order to perform the path selection process [25, 26]. 
 
Generally, symbolic execution challenges are related to four different areas that have been 
studied including memory, environment, state-space exploration, and constraint solving [27]. 
Memory related challenges are about the way the symbolic engine manipulates pointers, arrays 
and other complex objects that may give rise wrong symbolic values or expressions. 
Environment-related challenges are about the external call that may cause side effects to the 
execution. State-space exploration is about the control flow path that the execution engine should 
explore within a reasonable amount of time. Finally, the constraint solving related challenges are 
simply about the issues pertaining to the scalability of the constraint solver of a tool.    
 
Likewise, according to Xu et al., challenges pertaining to the symbolic execution tools (software 
and program testing) can be referred to as symbolic-reasoning and path-explosion challenges 
[28]. Symbolic-reasoning challenges are related to the problems that cause symbolic execution 
tools to generate incorrect test results for particular control flows. These include a symbolic 
variable declaration, symbolic jumps, symbolic memories, contextual symbolic values, floating-

int x, y; 
1:  if (x > y) { 

  2:     x = x + y; 
3:     y = x - y; 
4:     x = x - y; 

    5:     if (x - y > 0) 
          6:        assert (false); 

} 
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point numbers, buffer overflows, and arithmetic overflows. Likewise, path explosion challenges 
are related to the problems that introduce increased control flows to analye a program [29]. In 
other words, these are problems that cause symbolic execution tools to require increased time 
and resources on exploring the paths needed for analysis [30]. These include external function 
calls, loops, and crypto functions that may cause path-explosion issues to both large-sized and 
small-sized programs. In this paper, these challenges are considered and solutions from each 
tool in relation to the challenging area are discussed.  

 
3. SYMBOLIC EXECUTION TOOLS 
This section discusses some of the famous software testing tools which utilize symbolic execution 
techniques. The tools proposed in the literature are mostly used for testing input generation [31], 
regression testing [32], program deobfuscation [33], and dynamic software updates [34]. In 
addition, there is another group of tools that uses symbolic execution to guide exploit generation 
[30], vulnerability finding [35], and fuzzing [36].  
 
DART [37] is one of the early works with automated unit testing (concrete execution) technique. It 
combines three approaches in order to conduct software analysis. It uses static source code 
parsing for code inspection of C programs. It performs automatic random testing in order to find 
software bugs specifically inter-procedural bugs and bugs caused by the use of library functions. 
Finally, it conducts dynamic analysis in order to test how the program behaves under random 
testing. It tests programs for standards errors such as crashes, assertion violations, and non-
termination. As a concrete execution tool, DART does not employ path selection mechanisms 
because it uses specific input with a single path testing scenario. However, the random choosing 
of the value over the domain of potential inputs (random testing) followed by DART may lead to 
the same observation behaviour that may cause redundancy. Likewise, in random testing, the 
chance of selecting inputs that cause buggy behaviour may be small [38].       

 
CUTE [39] is a software testing tool that uses the concolic execution technique that combines 
concrete and symbolic executions. Different from DART, CUTE tests programs with first trying 
NULL, and then, in a subsequent execution, a concrete address, rather than making random 
choices. CUTE uses concretization of address to maintain consistency across different 
executions and due to efficiency in constraint solving. In this tool, a logical input map is used to 
generate memory input graphs for the unit under test. Sen, K. et al. reported that the CUTE works 
efficiently in exploring paths in C code to expose software bugs resulting in assertion violations, 
segmentation faults, or infinite loops [39]. The main reason why CUTE uses combined symbolic 
and concrete execution is to generate test inputs to explore different execution paths with which 
the execution proceeds [27]. In addition, the tool uses a constraint solver tool that facilitates the 
incremental generation of the input. Sen et al. proposed an implementation of CUTE in finding 
algebraic security attacks in cryptographic protocols and security breaches in unsafe languages, 
but have never published their work in this regard [40]. In another study jCUTE, the tools have 
been extended for Java programs [41].   

 
Cadar et al. proposed EXE, an effective bug-finding tool [42]. EXE uses the concolic execution 
technique that runs symbolic inputs to track the constraints in memory locations. The tool uses 
real code in finding bugs and capitalizes on the effect of running a single code path by 
automatically generating concrete inputs that can run into multiple program execution paths. 
What makes EXE different is that once a path hits a bug it automatically generates a test case 
using the value that has triggered the bug as concrete values. The tool uses search heuristics for 
path selection. The researchers use two performance optimizations including cashing constraints 
to avoid calling Simple Theorem Prover (STP) solver and removing irrelevant constraints from the 
queries the tools send to STP solver.    

 
SAGE proposed by Godefroid et al. is a concolic execution software testing tool that is internally 
used by Microsoft [43]. SAGE is considered as a general tool because it works at the instruction 
level to track integer constraints (bit-vectors). In another research, SAGE has been utilized as a 
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security testing tool [44]. The tool uses the random test style firstly employed by DART but 
mutates well-formed inputs using grammars. SAGE introduced a generational search as a 
constraint solver to explore the state space of large applications executed with large inputs. In 
addition, the tool uses a number of optimization techniques to improve the performance and 
memory usage of the constraint generation, such as tag caching where structurally equivalent 
tags are mapped to the same physical object, and local constraint caching. Moreover, the tool 
also uses the constraint subsumption optimization technique for structured-file parsing 
applications.       

 
According to Tillmann and De, PEX is a software testing tool developed for .NET that produces a 
small test suite with high code coverage [45]. PEX performs analysis using dynamic symbolic 
execution. To reason about the feasibility of execution paths, PEX uses constraint solver Z3. Z3 
[46] is an efficient satisfiability modulo theory solver which is commonly used in software 
verification and application analysis. By using Z3, PEX is able to reason operations such as 
substring, concatenation, and replacement. Z3 also offers binding for certain programming 
languages [46].    

 
A recently-developed tool, Tracer, is another software testing tool that is developed based on 
symbolic execution approach [47]. Tracer is a verification tool for the finite-state of sequential C 
programs. The tool uses constraint logic programming (CLP) as a resolver. In addition, the tool 
uses interpolation methods including the strongest postconditions and weakest preconditions.  
 
Identifying vulnerability in binary code is a complicated task. BitBlaze is one of the projects that 
focused on the analysis of binary codes for vulnerability analysis [2]. The BitBlaze project 
contributed to the community three tools each focusing different approaches of preforming binary 
analysis. The tools include Vine, a static taint analysis component, TEMU, a dynamic taint 
analysis component, and Ruder, a Concolic execution component. Rudder has core utilities and 
interfaces that enable users to take a snapshot and reload the exploration state providing user-
specific path selection policies. The tool uses the ‘Lazy’ approach which collects necessary 
information in the symbolic machine during the execution. Moreover, the tool uses STP for 
symbolic-reasoning and breadth-first search approach for path selection [2].  
 
BAP is one of the early binary analysis tools that is developed based on the symbolic execution 
approach [48]. BAP is a redesigned type of Vine [2] with the goal of including useful analysis and 
verification techniques that may be appropriate for binary code analysis and allowing user-level 
analysis. It assembles binary code into an optimized intermediate language (IL) and subsequently 
performs analysis at the IL level.   
 

Automatic Exploit Generation (AEG) is developed based on concrete and symbolic execution 
approaches [49]. The tool identifies exploitable paths in a program. Hence to address the path-
reasoning challenge, the tool employs a novel technique called preconditioned symbolic 
execution with which it targets paths that are more likely to be exploitable. In the report, the 
researchers have proposed five challenging areas where tools like AEG should focus on doing 
their analysis. The five challenging areas include the state space explosion problem, the path 
selection problem, the environment modelling problem, the mixed analysis challenge, and the 
exploit verification problem.  
 

Different from the AEG, Mayham is a concolic execution tool that finds exploitable bugs in binary 
code without debugging information [50]. There are four design principles adopted by Mayham 
that make it different from the tools discussed previously. The tool makes forward symbolic 
execution with arbitrary time, it does not repeat work for maximized performance, the tool keeps 
the works of previous analysis for reusability, and finally, the tool can reason about symbolic 
memory. In addition, the tool is known for its hybrid way of combining offline and online 
executions. Another work similar to that provided in Mayham is proposed in Veritesting [51]. 
Veritesting is a binary only symbolic execution tool targeting large scale testing of commodity off-
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the-shelf software. It uses dynamic symbolic execution for testing and static symbolic execution 
for verification. 
 
A recent tool, Firmalice, is proposed for the analysis of privacy-sensitive and security-critical 
applications installed on the IoT devices specifically [52]. The tool mainly focuses on the 
identification of the existence authentication bypass activities and existing backdoor. The tool 
uses concretizing user input as a constraint solver.  
 
Driller, developed by Stephens et al. is a hybrid vulnerability excavation tool that uses concolic 
execution to guide fuzzing [53]. The concolic execution component analyses the program, traces 
user input and utilizes its constraint-solving engine to guide fuzzing too take different paths, 
therefore it finds bugs located deeper in the code. Helping with a concolic execution component, 
Driller can detect more vulnerabilities, however, it requires a lot of computing power and may 
quickly run into the path explosion problem [53]. 
 
Table 1 summarizes the tools reviewed in this paper together with their techniques used to 
overcome challenges associated with symbolic-reasoning, path-reasoning, and the optimization 
approaches the tools employed in order to boost the performance or reduce the space required 
for the analysis. Only three tools have used optimization techniques (EXE, SAGE, and BAP). 
However, SAGE seems relatively more efficient in path reasoning and symbolic reasoning, while 
EXE is only good in path reasoning and BAP has shown less accurate. Four tools are language-
dependent including CUTE, DART, EXE, and Tracer. Nevertheless, most of the tools reviewed in 
this paper are language independent and employ binary codes for their analysis.  There has been 
an increase since 2012, which may show that symbolic execution tools are becoming more robust 
and main vulnerability analysis. The Concolic execution techniques have gained a higher bar of 
acceptance for the past decade. The tools have used different constraint solvers, however, the 
most used are SMT solvers. Of the 13 symbolic execution tools reviewed in this paper, 6 use 
Concolic approaches that combine symbolic with concrete executions. 
 
The first five columns provided in Table 1 capture the nature of the tools and little do they say 
about the evaluation of the tools; the last column capture the performance of the tools. Most of 
the tools do not perform quantitative evaluation of their results. However, based on the reviewing 
we were able to quantitatively compare different claims reported in each of the papers. As a 
result, the last column of Table 1 discusses the overall performance of each of the tools in 
relation to other similar works reviewed here. 
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Sources Tools SE or CE
Targeting 

Language or Binary
Constraint solvers

Used Oprimization 

technique
Strengths & weaknesses 

[39] CUTE CE Language approximate pointer constraints
its weakness is that it targets only C 

language programs

[37] DART SE Language depth first exploration

It lucks constraint solver for path selection, 

as it uses concrete inputs, that is it is time 

consuming

[42] EXE CE Language
best-first search (BFS)

heuristic and  depth-first search

Constraint caching and  

Constraint independence
It is relatively more efficient in path 

reasoning. 

[45] PEX CE Binary
Z3 for both symbolic and path 

reasoning

its effectiveness relies on good run-time 

checks in the code or the run-time system.

[43] SAGE CE Binary

code-coverage maximizing 

heuristic, compositionally 

(function summaries ), 

Generational Search

tag caching, local 

constraint caching, and 

constraint subsumption. 

It is relatively more efficient in path 

reasoning and symbolic reasoning cause it 

optimizes using caching.

[47] Tracer SE Language constraint logic programming

relatively less pupolar because language 

specific and does not use known way of 

symbolic  reasoning

[2] Rudder CE Binary

STP as the solver for symbolic 

reasoning, and breadth-first 

search  for path reasoning. 

one of the most famous among security 

testing concolic execution tools 

[48] BAP SE Binary SMT solvers

Optimizes  intermediate 

language (IL), making 

syntaxdirected analysis 

possible

It does not support floating point and 

privileged instructions, hence lass accurate 

[49] AEG CE Binary

preconditioned symbolic 

execution and path 

prioritization technique for 

path selection. 

resistant to buffer overflows, and it an end-

to-end fully automated tool 

[50] Mayham SE Binary SMT solver
MAYHEM does not have models for all 

system/library calls

[51]
Veritesti

ng
SE Binary SMT solver for path reasoning 

Can do some modern defenses such as 

canaries 

[52] Firmlice SE Binary concretizing user input 
used for modern application testing such 

mobile and IoT applications

[53] Driller SE Binary Mutated inputs supports fuzzing with sysmbolic execution

TABLE 1: Summary of Symbolic Execution Tools. 
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4. DISCUSSIONS AND FUTURE DIRECTIONS  
In this section, potential directions to enhance the state of art of symbolic execution tools are 
discussed. According to our review, the scalability of such reviewed tools is an open direction that 
can be taken as future research. Researchers have only slightly worked on the optimizations of 
both performance and memory space of the tools. Investigating new optimization methods to 
lower the overhead of symbolic execution and concolic execution tools could make the tools more 
useable. The well-known path explosion problem is still a main concern of the symbolic execution 
tools. Therefore, finding a way to limit the paths or possibly reduce the number of less important 
paths may be helpful to slow down the path explosion problem.  
 
Taking symbolic execution tools that may detect problems, such as authentication bypass, 
towards cloud and mobile applications could be an interesting future direction. In addition to the 
symbolic execution engines, SMT solvers are decision procedures that solve problems that arise 
from the use of logic formulas. SMT solvers are predominately used in the security testing tools, 
however, software testing tools make little use of these solvers, and their support for non-linear 
real and integer arithmetic is still in its infancy. 

 
5. CONCLUSION 
Without access to source code, binary analysis becomes an effective method for finding 
vulnerabilities from programs. Researchers have proposed and developed many techniques to 
help with the binary analysis process, for example, taint analysis, symbolic and concolic 
executions. In this paper, symbolic and concolic execution techniques are discussed in detail. 
Tools utilize symbolic and/or concolic execution are reviewed as well. These tools mostly focus 
on software security testing, and they usually use symbolic execution or concolic execution to 
help with the test generation and program analysis. The work related to this area is vast and 
cannot be covered in a single review paper. However, this survey paper discusses well-known 
and usually referenced tools that cannot be overlooked while studying this area. The comparison 
table built from the review can be used by researchers in this area to provide a guide to the 
commonly used tools which employs symbolic and/or concolic execution techniques.  
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