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Abstract 

 
Classification of software security vulnerability no doubt facilitates the understanding of security-
related information and accelerates vulnerability analysis. The lack of proper classification not 
only hinders its understanding but also renders the strategy of developing mitigation mechanism 
for clustered vulnerabilities. Now software developers and researchers are agreed on the fact that 
requirement and design phase of the software are the phases where security incorporation yields 
maximum benefits. In this paper we have attempted to design a classifier that can identify and 
classify design level vulnerabilities. In this classifier, first vulnerability classes are identified on the 
basis of well established security properties like authentication and authorization. Vulnerability 
training data is collected from various authentic sources like Common Weakness Enumeration 
(CWE), Common Vulnerabilities and Exposures (CVE) etc. From these databases only those 
vulnerabilities were included whose mitigation is possible at the design phase. Then this 
vulnerability data is pre-processed using various processes like text stemming, stop word 
removal, cases transformation. After pre-processing, SVM (Support Vector Machine) is used to 
classify vulnerabilities. Bootstrap validation is used to test and validate the classification process 
performed by the classifier. After training the classifier, a case study is conducted on NVD 
(National Vulnerability Database) design level vulnerabilities. Vulnerability analysis is done on the 
basis of classification result.  
 
Keywords: Security Vulnerabilities, Design Phase, Classification, Machine Leaning, Security Properties 

 
 
1. INTRODUCTION 
Developing secure software remains a significant challenge for today’s software developers as 
they still face difficulty in understanding the reasons of vulnerabilities in the existing software. It is 
vital to be able to identify software security vulnerabilities in the early phases of SDLC (Software 
Development Lifecycle) and one of early detection approaches is to consult with the prior known 
vulnerabilities and corresponding fixes [1]. Identification of candidate security vulnerability pays a 
substantial benefit when they are deals in early phases like requirement and design phases of the 
software [2]. Classification of vulnerabilities is fruitful in understanding the vulnerabilities better 
and classification also helps in mitigating group of vulnerabilities. Identifying and mitigating 
security vulnerabilities is no doubt a difficult task therefore taxonomy is developed that can 
classify vulnerabilities into classes and this will help designer to mitigate cluster of vulnerabilities. 
There are number of approaches of taxonomy development in past, like [3,4,5,6] etc, but no one 
ever propose any taxonomy that classify design level vulnerabilities on the basis of security 
properties. We have already proposed a taxonomy in [7], as shown in Table 1.0 (a) in which,  
priori classification is proposed and vulnerabilities are classified manually. But in this classification 
there is chance of ‘Hawthorne Effect’, it also largely depends on the expertise of the classifier. 
Therefore here we are creating a classifier that can classify a vulnerability data automatically. 
Machine learning is now a popular tool in the automation task. Researchers have explored the 
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use of machine learning techniques to automatically associate documents with categories by first 
using a training set to adapt the classifier to the feature set of the particular document set [8]. 
Machine learning is a relatively new approach that can be used in classifying vulnerabilities. 
Therefore here Classifier is proposed, that classifies vulnerabilities on the basis of previously 
identified vulnerability and can help designer to place vulnerability in the predefined vulnerability 
classes that are based on the security properties of the software. Therefore mitigation mechanism 
can be applied for the whole class of vulnerabilities. In this classifier, first data pre-processing is 
done like text stemming, stop word removal, case transformation then SVM (Support Vector 
Machine) is used for the final classification with the regression model. Several conclusions are 
drawn after applying a classification. At last using this classifier NVD (National Vulnerability 
Database) vulnerabilities are classified and analyzed.  
 

 
First Level  

 
Second Level Third level Fourth Level 

 

 
 
 
 
 
 
 
 
 
 
 
 
Access 
Control 

Access Control 
at Process 
Level 

Authentication  Missing Authentication  procedure 
Insufficient Authentication  procedure 
Wrong Authentication  procedure 

Authorization  Missing Authorization procedure 
Insufficient Authorization procedure 
Wrong Authorization  procedure 

Audit & logging  Missing Audit and logging 
Insufficient Logging or Audit of 
information  
Wrong Audit or Logging of information  

Access Control 
at 
Communication 
Level 

Secured Session 
Management  

Missing Secured Session 
management  
Insufficient Secured Session 
Management 
Wrong Secured Session Management 

Secured 
Information Flow  

Missing Encryption of Sensitive Data 
During Transmission 
Insufficient Encryption of Sensitive 
Data during Transmission 
Wrong Encryption of Sensitive Data 
during Transmission 

Exposures 
leading to 
Access 
Violation 

Exposures in 
Error Message 

Missing  Secured Error Message 
Insufficient Secured Error Message 
Wrong Secured Error Message 

Predictable 
Algorithm 
/sequence 
numbers/file 
names 

Missing Randomness in the Random 
Sequence Ids 
Insufficient Randomness  in the 
Random Sequence Ids 
Wrong Randomness in the Random 
Sequence Ids or Wrong Choice of File 
Name 

User Alertness Missing User Alerting Information 
Insufficient User Alerting Information 
Wrong User Alerting Information 

 
TABLE 1.0 (a): Taxonomy of Design Level Vulnerabilities 

 
While considering the number of classes in the proposed classifier, we consider only ‘access 
control at process level’ and ‘access control at communication level’ and all the other type of 
vulnerabilities are considered in the ‘Others’ class. Because ‘exposure leading to access violation’ 
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class covers a large domain of vulnerabilities and needs a separate study, therefore after 
exploring the domain of this class, we exclude this from the classifier and will consider for the 
future work.  
Rest of the paper is organized as follows, in section 2, related works in the vulnerability 
classification is discussed, and then in section 3, the development process of vulnerabilities 
classification model is explained in detail. Classification of vulnerabilities using developed 
classifier is done in section 4. Conclusion and future work are discussed in section 5.  

 
2. RELATED WORK 
There are many classification approaches using machine learning techniques like [9] proposed 
uses a ontological approach to retrieving vulnerability data and establishing a relationship 
between them, they also reason about the cause and impact of vulnerabilities. In their ontology 
vulnerability management (OVM), they have populated all vulnerabilities of NVD (National 
Vulnerability Database), with additional inference rules, knowledge representation, and data-
mining mechanisms. Another relevant work in vulnerability classification area is done by [10], they 
proposed a CVE categorization framework that transforms the vulnerability dictionary into a 
classifier that categorizes CVE( Common Vulnerability and Exposure) with respect to diverse 
taxonomic features and evaluates general trends in the evolution of vulnerabilities. [11], in their 
paper, entitled “Secure software Design in Practice” presented a SODA (a Security-Oriented 
Software Development Framework), which was the result of a research project where the main 
goal had been to create a system of practical techniques and tools for creating secure software 
with a special focus on the design phase of the software. Another approach of categorizing 
vulnerabilities is that of [12]. In their paper [12], they looked at the possibilities of categorizing 
vulnerabilities in the CVE using SOM. They presented a way to categorize the vulnerabilities in 
the CVE repository and proposed a solution for standardization of the vulnerability categories 
using a data-clustering algorithm. [13], proposed SecureSync, an automatic approach to detect 
and provide suggested resolutions for recurring software vulnerabilities on multiple systems 
sharing/using similar code or API libraries. There are many other vulnerability classification 
approaches like [14,15,16], but all the above mentioned approaches are either to generic in 
nature or they cannot be used to classify vulnerabilities on the basis of security properties of the 
software. Therefore in this research work we are proposing a classifier that is developed using 
machine learning techniques and is very specific to the design phase of the software. In the next 
section, a development stage of the classifier is explained.  

 
3.0 DESIGN LEVEL VULNERABILITIES CLASSIFICATION MODEL 
Software vulnerability databases are essential part of software security knowledgebase. There 
are a number of vulnerability databases that exchanges software vulnerability information 
however, its impact on vulnerability analysis is hindered by its lack of categorization and 
generalization functionalities [10]. To extract useful and relevant information from these 
databases, lots of manual work is required. For example, if software developer wants to know 
about the most common and severe vulnerability prevailing in a current software in a particular 
period of time then he has to study all the vulnerability descriptions published during that period, 
then he has to classify those vulnerability based on his own criteria and then he has to check the 
severity rating provided by various experts. This is very unreliable, tedious and protracted task. 
Using a proposed classification model, researchers and developers can easily classify design 
level vulnerabilities and identify a mitigation mechanism in the form of design pattern, in the early 
phases of the SDLC. The classification results with severity rating can further be used to calculate 
the risk of vulnerability occurrence at the design phase of the software. 
 
Automated text classifier is basically used to classify the text in the predefined classes. An 
abstract view of the classifier is shown in Fig 3.0 (a). In proposed design level vulnerability 
classifier, first text is pre-processed using various processes like tokenization, case 
transformation, stop-word removal and stemming, then SVM (Support Vector Machine) is used to 
classify the text and finally bootstrap validation is used to test and validate the results. The 
development process of the classifier is explained in Fig 3.0 (b).  
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FIGURE 3.0 (a): Abstract Vulnerability Classifier 

 
The vulnerability categorization framework proposed by [10] is similar to this design level 
classifier. But Chen’s framework is a generalized categorization framework that is developed to 
classify all the vulnerabilities of CVE, on the bases of classification categories of BID, X-force and 
Secunia. The training data in their framework is also taken from these vulnerabilities databases 
only.  
 

 
 

FIGURE 3.0 (b): Design Level Vulnerabilities Classification Process 

 
In our design level vulnerability classifier, only design level vulnerabilities are classified and in 
training data only those identified vulnerabilities are considered which can be mitigated at the 
design level of the software. Moreover the classes are defined on the basis of security properties 
of the software like authentication, authorization etc., which are generally considered while 
developing the security design patterns of the software. Therefore after classification 
developers/researchers can priorities prevailing vulnerabilities class before choosing security 
design pattern. 
 
3.1 Feature Vector Creation 
The vulnerabilities in the CVE are defined in the natural language form. Therefore only way to 
identify a feature vector using the vulnerability description is the frequency of keywords in the 
description. Therefore feature vector are identified by the keywords used in the description of the 
vulnerabilities. To make vulnerability description into a structured representation that can be used 
by machine learning algorithms, first the text will be converted into tokens and after stemming and 
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stop word removal, and case transformation. There are five steps in the feature creation process, 
specified as follows: 
a). Tokenization 
b). Case Transformation 
c). Stopword elimination 
d). Text stemming of CVE entries 
e). Weight Assignment 
 
a).Tokenization 
The isolation of word-like units form a text is called tokenization. It is a process in which text 
stream is to break down into words, phrases and symbols called tokens [17]. These tokens can 
be further used as input for the information processing. In order to convert text in machine 
learning form, first the raw text is transformed into a machine readable form, and first step 
towards it is a tokenization. As shown in Fig. 3.1 (a), the raw text is first feed to the pre-processor, 
convert the text in the form of tokens then further morphological analysers are used to perform 
required linguistic analysis.  
 

 
 

FIGURE 3.1 (a): Text transformations before linguistic analysis 

 
In order to feed vulnerability description in machine learning process, the textual description of 
vulnerability is first converted in the form of tokens. In Table 3.1 (a), a vulnerabilities description is 
shown after tokenization.  
 

 
 

TABLE 3.1 (a): Tokenization of Vulnerabilities 
 
 

Vulnerability ID Vulnerability Description  Vulnerability Description after  
Tokenization 

CVE-2007-0164 Camouflage 1.2.1 embeds password 
information in the carrier file, which allows 
remote attackers to bypass authentication 
requirements and decrypt embedded 
steganography by replacing certain bytes 
of the JPEG image with alternate 
password information. 

Camouflage, embeds, password, 
information, in, the, carrier, file, 
which, allows, remote, attackers, 
to, bypass, authentication, 
requirements, and, decrypt, 
embedded, steganography, by, 
replacing, certain, bytes, of, the, 
JPEG, image, with, alternate, 
password, information. 
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b). Case Transformation 
When raw text is retrieved for processing from any source, then it contains words in both upper 
case as well as lower case. The machine learning algorithms reads words in different cases as 
different words. In order to transform all the words in the same case, Case transformation 
process is used. Case transformer, transforms all characters in a document to either lower case 
or upper case, respectively. In our case we have transformed all the words in the document in 
lower case. 
 

 
TABLE 3.1 (b): Case Transformation of Vulnerabilities Description 

 
c). Stop word Removal 
Stop word elimination is a process of removing those tokens that are considered as only for 
grammatical function without adding new meaning to sentences they involve [18]. The stop word 
list generally consists of articles, case particles, conjunctions, pronouns, auxiliary verbs and 
common prepositions. There is no unique list of stop words which is always used. There are 
number of lists that are proposed by different researchers. A list of 418 stop word is used by 
Chen [10]. A similar stop word list is used in information retrieval systems Snowball [19] and 
Lemur [20].The vulnerability description after stop word removal is shown in Table 3.1 (c) 
 
 

Vulnerability ID Vulnerability description  after 
tokenization and case transformation 

Vulnerability description after 
Stopword Removal 

CVE-2007-0164 camouflage, embeds, password, 
information, in, the, carrier, file, which, 
allows, remote, attackers, to, bypass, 
authentication, requirements, and, 
decrypt, embedded, steganography, by, 
replacing, certain, bytes, of, the, jpge, 
image, with, alternate, password, 
information. 

camouflage, embeds, password 
,information, carrier, file, allows, 
remote, attackers, bypass, 
authentication, requirements, 
decrypt, embedded, 
steganography, replacing, bytes, 
jpge, image, alternate, password, 
information. 

 
TABLE 3.1 (c): Stop word removal from vulnerabilities 

 
d). Text Stemming 
Uses of stemming algorithms in modern information retrieval (IR) systems are common these 
days. Stemming algorithms are helpful for free text retrieval, where search terms can occur in 
various different forms in the document collection. Stemming makes retrieval of such documents 
independent from the specific word form used in the query [21]. To extract the information from 
vulnerability description, stemming algorithm can be used, so that text can be easily transformed 
into a machine readable form. Porter stemming algorithm is one of the popular algorithms that is 
generally used in the information retrieval process.  Porter's algorithm consists of 5 phases of 
word reductions, applied sequentially. Within each phase there are various conventions to select 
rules, such as selecting the rule from each rule group that applies to the longest suffix. In the first 
phase, this convention is used with the following rule group [22]:  
Rule             Example 

Vulnerability 
ID 

Vulnerability Description  Vulnerability Description after  
Case Transformation 

CVE-2007-
0164 

Camouflage, embeds, password, 
information, in, the, carrier, file, which, 
allows, remote, attackers, to, bypass, 
authentication, requirements, and, 
decrypt, embedded, steganography, by, 
replacing, certain, bytes, of, the, JPEG, 
image, with, alternate, password, 
information 

camouflage, embeds, password, 
information, in, the, carrier, file, 
which, allows, remote, attackers, 
to, bypass, authentication, 
requirements, and, decrypt, 
embedded, steganography, by, 
replacing, certain, bytes, of, the, 
jpge, image, with, alternate, 
password, information 
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SSES  SS  caresses caress 
IES I  ponies poni 
SS SS caress caress 
S  cats cat 
The vulnerability description after applying porter stemming algorithm is shown in Table 3.1 (d). 

 
 

 
TABLE 3.1 (d): Stemming of words in Vulnerabilities Description 

 
e). Weight Assignment 
After text stemming, the next step is a weight assignment of each word of vulnerability 
description. The simplest approach is to assign the weight to be equal to the number of 
occurrences of term ‘t’  in document ‘d’. This weighting scheme is referred to as term frequency 
and is denoted ‘tf t,d’  with the subscripts denoting the term and the document in order [22]. It is 
normally computed as follows.  
 

tft,d   =   ft,d  / maxk fk,d                                                           Eq. 3.1 (e.1) 
 

where 
ft,d  is the frequency (number of occurrence of the term ‘t’ in document ‘d’ ) and  
maxk f k,d (maximum number of occurrences of any term) 
Thus, the most frequent term in document ‘d’ gets a TF as 1, and other terms get fractions as 
their term frequency for this document. But the disadvantage of using a term frequency is that, in 
this all the terms are considered equally important. In order to avoid this bias, term frequency and 
inverse document frequency (tf-idf) weighting is used. The IDF for a term is defined as follows 
[23].  

Idft,d        =         log | D |  
              
                     |  {d: t Є d} |                                            Eq. 3.1 (e.2) 

 
where 

• | D | : the total number of documents   
 

•  : number of documents where the term t appears (i.e., ) 
 
 

As defined in [22], the tf-idf weighting scheme assigns the term ‘t’ a weight in document ‘d’ given 
by  
 

tf-idft,d  =  tft,d  .  idft 
 
In other words, term frequency-inverse term frequency assigns to term ‘t’ a weight in document ‘d’  
is  

• high when term occurs many times within a small number of documents ; 

Vulnerability ID Vulnerability Description  Vulnerability Description after  
Text Stemming 

CVE-2007-0164 Camouflage 1.2.1 embeds password 
information in the carrier file, which allows 
remote attackers to bypass authentication 
requirements and decrypt embedded 
steganography by replacing certain bytes 
of the JPEG image with alternate 
password information. 

camouflag emb password inform 
carrier file allow remot attack 
bypass authent requir decrypt 
embed steganographi replac byte 
jpeg imag altern password inform 
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• lower when the term occurs fewer times in a document, or occurs in many documents;  

• lowest when the term occurs in virtually all the documents. 
 

            
     Words         
 
 
Row No.  

abil  
abs
enc 

Accep
t 

Access accoria account 
actio
n 

… 

1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 

2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 

3 0.0 0.0 0.0 
0.069434622
98821593 

0.0 0.0 0.0 
… 

4 0.0 0.0 0.0 
0.120849276
3637866 

0.0 0.0 0.0 
… 

5 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 

6 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 

7 0.0 0.0 0.0 
0.071144256
6706304 

0.0 0.0 0.0 
… 

8 0.0 0.0 0.0 0.0 0.0 0.0 0.0 … 

9 0.0 0.0 0.0 
0.129932379
10966035 

0.0 0.0 0.0 
… 

10 0.0 0.0 0.0 
0.079183463
69069837 

0.0 
0.2787299435
038924 

0.0 
… 

… … … … … … … … … 

 
TABLE 3.1 (e): Example set of feature vector with their tf-idf 

 
Now after implementing all the above processing we get each vulnerability description as a 
vector, weight that is calculated on using tf-idf formula. Example set of ten rows is shown in table 
3.1 (e). This vector form will be used in the scoring and ranking of vulnerabilities. 
 
3.2 Categorization Using Support Vector Machine 
Text categorization is the process of categorizing text documents into one or more predefined 
categories or classes. Differences in the results of such categorization arise from the feature set 
chosen to base the association of a given document with a given category [24]. There are a 
number of statistical classification methods that can be applied to text categorization, such as 
Naïve Bayesian [25], Bayesian Network [25], Decision Tree [26, 27], Neural Network [28], Linear 
Regression [29], k-NN [30]. SVM (support vector machine) learning method introduced by [31], 
are well-founded in terms of computational science. Support vector machines have met with 
significant success in numerous real-world learning tasks [25]. Compared with alternative 
machine learning methods including Naive Bayes and neural networks, SVMs achieve 
significantly better performance in terms of generalization [32, 33]  
 
SVM classification algorithms, proposed by Vapnik [34] to solve two-class problems, are based 
on finding a separation between hyperplanes defined by classes of data, shown in Figure 3.2 (a). 
 



Shabana Rehman & Khurram Mustafa 

International Journal of Computer Science and Security (IJCSS), Volume (6): Issue (4) 246 

 
            

FIGURE 6.2.2: Example of SVM hyper plane pattern 

 
This means that the SVM algorithm can operate even in fairly large feature sets as the goal is to 
measure the margin of separation of the data rather than matches on features [24]. The SVM is 
trained using pre-classified documents.  
 
As explained in [34], for a given set of training data T = {.xi, yi} (i = 1,…, m), each data point  .xi Є 
Rd with d features and a true label yi Є Y = {l1, . . . , lk}. In case of binary classifier, label set is Y 
= {l1 = −1, l2 = +1}, it classifies data point in positive and negative by finding separating 
hyperplane. The separating hyperplane can be expressed as shown in Eq. 3.2 (a). 
 

 

w · .x + b = 0 --------------------------------------------------------------------------Eq 3.2(a)      
      

 
where w Є R

d
 is a  weight vector is normal to the hyperplane, operator (·) computes 

the inner-product of vectors w and x and b is the bias. Now we want to choose the ‘w’and ‘b’ to 
maximize the margin, or distance between the parallel hyperplanes that are as far apart as 
possible while still separating the data. These hyperplanes can be described by the equations 
 

 

w · .x - b = 1--------------------------------------------------------------------------Eq 3.2 (b) 
 

 
and 
 

 

w · .x - b = -1-------------------------------------------------------------------------Eq 3.2 (c) 
 

 
In the case that the label set Y = {l1 = 1, . . . , lk = k} and k > 2, a multiclass SVM learning model 
is built with two approaches in the proposed framework: multiclass-to binary reduction and 
multiclass-optimization methods [10]. In the multiclass-to-binary reduction method, the learning 
problem in question is reduced to a set of binary classification tasks and a binary classifier is built 
independently for each label lk with the one-against-rest training technique [35]. When more than 
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two classes are involved then regression model is used. regression model builds a classifier 
using a regression method which is specified by the inner operator. For each class i a regression 
model is trained after setting the label to (+1)  if the label equals i and to (-1) if it is not. Then the 
regression models are combined into a classification model. Here we are using SVM 
classification model, therefore Regression model is combined into SVM. In order to determine the 
prediction for an unlabeled example, all models are applied and the class belonging to the 
regression model which predicts the greatest value is chosen.  
 
3.3 Identification and Preparation of Training Data 
There are number of public and private vulnerability databases that classify vulnerabilities on 
different bases like cause, phase of occurrence, product specific etc. the list is shown in Table 3.3 
(a). But they all are too generic in nature. The CWE (Common weakness Enumeration) [36] is a 
vulnerability database and portal in which each vulnerability is specified with its type, mitigation, 
phase of introduction and security property it belongs to. Therefore it is a best place from where 
vulnerability data can be collected on the basis of phase of introduction and the security property 
it belongs to. Fig 3.3 (a) is screenshot of the CWE window, it is showing a information that each 
entry of CWE contains. In this we are interested in only those vulnerabilities that can be mitigated 
in the design phase of the software. But in CWE the vulnerabilities are divided into number of 
classes and number of examples are given in the description of each class. In order to collect the 
training data from CWE, we explore the required security class, then collect vulnerability example 
from each class. Almost all the examples that are used in CWE are from CVE (Common 
Vulnerability and Exposure).Maximum possible numbers of examples are collected from the CWE 
for the training set.  

 
S. No. Database Name URL 

1.  Common  Vulnerability and Exposures http://cve.mitre.org/ 
2.  Common Weakness Enumeration http://cwe.mitre.org/ 

3.  Computer Associates Vulnerability 
Encyclopedia 

http://www3.ca.com/securityadvisor/vulninfo/br
owse.aspx 

4.  Dragonsoft vulnerability database http://vdb.dragonsoft.com 
5.  ISS X-Force http://xforce.iss.net/xforce/search.php 
6.  National Vulnerability Database http://nvd.nist.gov/ 
7.  Open Source Vulnerability Database http://www.osvdb.org/ 

8.  Public Cooperative Vulnerability Database https://cirdb.cerias.purdue.edu/coopvdb/public/ 
9.  Security Focus http://www.securityfocus.com/vulnerabilities/ 

 
TABLE 3.3 (a): Vulnerability Database with their URLs 
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FIGURE 3.3 (a): CWE Vulnerability Class Description Window 

 
After the exhaustive search of CWE vulnerability classes, the number of vulnerability examples 
that are collected, are shown in Table 3.3 (b).  While collecting data from CWE, at most care is 
taken to include only those vulnerability classes where the time of introduction is specified as 
“design phase” 
 
 
 
 
 
 
 
 
 

 
TABLE 3.3 (b): Number of training data identified under each class 

 
3.4 Testing and Validation 
After the collection of training data, a SVM learning model can be built.  But SVM is basically a 
binary classifier. As we have multiple classes with |Y |>2, the learning 
 
problem is decomposed into |Y | binary classification tasks with the multiclass-to-binary reduction 
method, and subsequently |Y | binary classifiers are built with the one-against-rest training 
method that essentially transforms the learning task for category li of Y into a two-class 
categorization by treating data points with label li in the training data as positive examples and the 
remaining data points as negative examples [10]. We are using Rapidminer tool to implement the 
SVM. Regression model is used to classify the data into multiple class. After supplying the data 

S. No. Vulnerability Class Number of 
Training data 

1. Authentication 54 
2. Authorization 50 
3. Audit and Logging 36 
4. Secure Information Flow 31 
5. Secure Session Management 24 

Vulnerability 
is introduced 

at the Design 

phase of the 

SDLC 

Examples 

from CVE, 

that can be 

included in 

training set of 

authentication 

vulnerabilitie
s 
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regression model, bootstrap validation is used to validate the classification. Fig 6.2.4 (a) is 
showing the screen shot of rapid miner while implementing bootstrap validation. 
 

 
 

FIGURE 3.4 (a): Screen shot from ‘Rapidminer Tool’, while implementing bootstrap validation 

 
3.5 Bootstrap Validation 
The bootstrap family was introduced by Efron and is first described in [37]. In this method, for 
given dataset of size n a bootstrap sample is created by sampling n instances uniformly from the 
data. There are several bootstrap methods. A commonly used one is the 0.632 bootstrap. As 
explained in by Han and Kimber in their book ‘Data Mining: Concepts and Techniques’ [38], in 
this method, suppose we have ‘d’ tuples. The data set is sampled ‘d’/6 times, with replacement, 
resulting in the bootstrap samples or the training set of d samples. The data tuple that are not 
included in the training, forms the test set. Now the probability for each tuple to be selected is 1/d, 
and the probability of not being chosen is  (1- 1/d).We have to select d times, so the probability 
that a tuple will not be chosen during this whole time is (1-1/d)d. If d is large, the probability 
approaches e

-1
 = 0.368. Thus, 36.8% of tuples will not be selected for training and thereby ends 

up in the test set, and the remaining 63.2% will form the training set. 
 
The sampling procedure can be recorded k times, where in each iteration, we can use the current 
test set to obtain the accuracy estimate of the model obtained from the current bootstrap sample. 
The overall accuracy of the model is then estimated as  
  

                  k 
Acc (M) = Σ (0.632 X Acc (Mi)test-set + 0.368 X Acc(Mi)train_set)                Eq. 3.5 (a) 
                  i=1  
 

 
where Acc (Mi)test-set is the accuracy of the model obtained with the bootstrap sample ‘i’ when it is 
applied to the test set ‘i’. Acc(Mi)train_set is the accuracy of the model obtained with bootstrap 
sample ‘i’ when it is applied to the original set of the data tuples. The bootstrap method works well 
with the small data set. 
 
The whole process that is followed in making the classifier is shown in Figure 3.5 (a). the rapid 
miner data mining tool is used that have almost all the available data-mining process in the form 
of operators. First of all training data is feed to the regression model that is integrated with SVM, 
then ‘Apply Model’ operator is used to apply the created model and performance operator is used 
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to measure the performance of the classifier. As an output, the confusion matrix is be obtained 
that will show the accuracy of the classifier. 
 

 
 
FIGURE 3.5 (a): Classification Model using Bootstrap Validation  

 
The confusion matrix that is obtained after the application of the classifier is shown in Table 3.5 
(a) and the 3D- graphical representation of the confusion matrix is shown in Fig 3.5 (b). 

 

Accuracy: 94.52% +/- 1.85% (mikro: 94.48%) 
 

TABLE 3.5 (a): Confusion Matrix 

 
 

True 
 
 

Pred. 

True 
Authorization 

True 
Others 

True Secure-
Information-

Flow 

True 
Audit 
and 

Logging 

True 
Authentication 

True Session-
management 

Class 
Precision 

Pred. 
Authorization 

177 2 0 0 4 0 96.72% 

Pred. Others 0 139 0 0 2 0 98.58% 

Pred. Secure-
Information-

Flow 
0 0 131 0 0 0 100.00% 

Pred. Audit 
and Logging 

0 4 0 128 7 0 92.09% 

Pred. 
Authentication 

2 16 0 6 189 0 88.73% 

Pred. Session-
management 

0 4 0 0 3 92 92.93% 

Class Recall 98.88% 84.24% 100.00% 95.52% 92.20% 100.00%  
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FIGURE. 3.5 (b): Confusion matrix in the form of 3D Graph 

 
All most all the classes have class precision value above 90%. The accuracy rate of about 90% 
makes the classifier quite accurate (Han and Kamber, 2006). The overall accuracy rate of 
developed classifier is 94.5 %. 
 
As shown in Table 3.5 (a), the class precision of ‘authentication class’ is only 88%, because the 
keywords used in the authentication class are common to other classes also. For example the 
vulnerability description mainly consist of words like ‘unauthenticated user’, ‘not allowed 
authenticated user’, etc, which actually don’t indicate the cause as authentication, but classifier 
gets confused due to the frequent use of theses terms in other classes also, which affect the 
performance of classifier. But overall accuracy of the classifier is acceptable, which is 94.5%.  
 

4.0 CLASSIFICATION RESULTS  
Now using this design level ‘Vulnerability Classification Model’ the vulnerabilities can be classified 
into six classes. In NVD (National Vulnerability Database), total 427 vulnerabilities are identified 
as design level vulnerabilities till February 2009. Now in order to classify these vulnerabilities in 
our predefined six classes, vulnerabilities first need to be feed in the classifier, then predicted 
values can be used for further analysis. After feeding 427 design level vulnerabilities in the model, 
the example set of the predicted values that is obtained is shown in Table 4.0 (a). The screenshot 
from Rapidminer during the application of the classifier is shown in Fig.4.0 (a) and the final 
number of classified vulnerabilities is shown in Fig.4.0 (b). From the classification results it is 
clear that out of 427 vulnerabilities that are classified as design level vulnerabilities, 117 are 
actually not design level vulnerabilities. From remaining vulnerabilities, Authentication and 
authorization related vulnerabilities are most prevailing one, constituting about 53% of total 
vulnerabilities.   
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C* 
 

V.N
o. 
 
 

Confidence 
(Authorizati

on) 

Confidence 
(Others) 

Confidence 
(Secure 

Information 
Flow) 

Confidence 
(Audit and 
logging) 

Confidence 
 

(Authenticati
on) 

Confidenc
e 

(Session 
Managem

ent) 

Prediction 

1 
-

0.70382212
6777 

-
0.74117964

80 

-
0.05035211

037 
1.0 

-
0.995248931

575 
0.0 

Audit and 
Logging 

2 
-

0.46653638
8761 

1.0 
-

1.04654845
455 

-
0.54866717

509 

-
0.733920948

135 
0.0 Others 

3 
-

0.80392399
6569 

-
0.56403681

66 

-
0.61342764

113 

-
0.39066602

401 
1.0 0.0 

Authentica
tion 

4 
-

0.92738005
8636 

-
0.80057971

24 

-
0.56610700

139 

0.01646968
988 

1.0 0.0 
Authentica

tion 

5 
-

0.63117841
7772 

-
0.72385838

954 

-
0.99080223

010 

-
0.45735700

877 
1.0 0.0 

Authentica
tion 

6 
-

0.67407254
0417 

-
1.03283405

41 

-
1.03255019

721 

0.32822280
439 

1.0 0.0 
Authentica

tion 

7 
-

1.02248907
1514 

-
0.93112276

32 

-
0.13558666

871 
1.0 

-
0.563459046

881 
0.0 

Audit and 
Logging 

… … … … … … … … 
… … … … … … … … 

 
TABLE 4.0 (a): Sample dataset from classification result 

 
Percentage of Authentication is 30%, which makes it most important property to be mitigated at 
the design phase of the software. Authorization constitute 23.2% of all the vulnerabilities, which 
makes it second most important security attribute to be 
 

 
 

FIGURE 4.0 (a): Screenshot from rapid miner, while implementing the final model 
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The percentage of ‘audit and logging’, ‘secure information flow’ and ‘session management’ are 
18%, 15% and 12% respectively, which makes them almost equally important. 
 

Vulnerability Class Count Percentage Percentage 
excluding Others 

Authentication 96 22.48244 30.96774 
Authorization 72 16.86183 23.22581 

Audit and Logging 56 13.11475 18.06452 
Secure-Information-Flow 47 11.00703 15.16129 

Session-management 39 9.133489 12.58065 
Others 117 27.40047 0.0 
Total 427 100 100 

 
TABLE 4.0 (b): Number of vulnerabilities classified under each class 

 
These vulnerability classification data can be used with the severity rating to calculate the risk of 
vulnerability occurrence at the design phase.  

 
5.0 CONCLUSION AND FUTURE WORK 
As discussed in the previous sections, study of known vulnerabilities is very useful tool for the 
developer. Our approach is in the direction of identifying, classifying and learning from known 
vulnerabilities. So that these vulnerabilities can be avoided in the next generation of the software. 
In available vulnerability databases, there is no information about the vulnerability cause or the 
SDLC phase in which they can be removed. Using our proposed classification model, developer 
would be able to classify any vulnerability from any vulnerability database. The classification 
model will tell the developer whether the vulnerability be mitigated at the design level? If 
vulnerability is identified as a design level vulnerability then it will classify the identified 
vulnerability in security feature. After knowing the class of security feature, designer can adapt 
necessary design patterns that can prevent these vulnerabilities in the new under-developed 
software. The accuracy of the classified is found to be satisfactory and it can be used to classify 
future vulnerabilities. Classifying ‘exposure leading to access violation’ class of vulnerabilities is 
one of the prompt future works that can be done. The classification results can further be used to 
calculate the security risk at the design phase of the software. After risk calculation, mitigation 
mechanisms in the form of design patterns can be identified and thus designer will be able to 
mitigate security vulnerabilities at the design phase of the software. Another future work that can 
be done is the creation of tool that can automate the task of vulnerability classifications. After this 
classification our prompt objective will be to identify, analyze and classify design patterns that can 
be adapted in order to avoid vulnerabilities in the new software. 
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