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Abstract 
 
Power reliability is becoming problematic nationwide. Power outages are becoming increasingly 
common for various reasons which include climate change, the increase in distributed energy 
resources (DERs), and old infrastructure. Climate change has promoted a societal push toward 
carbon neutrality. Energy demands and the correlated load requirements on the grid are 
increasing and are expected to rise. Additionally, consideration is needed for the predicted large-
scale use of electric vehicles (EV), along with proliferation of data centers for things such as 
bitcoin and generative artificial intelligence (AI) types of industries with large computation 
requirements. Currently, data centers are contributors to the largest growth of power 
consumption. The capacity requirements to meet future predicted load demand along with 
anticipated variable energy resources with limited inertia necessitate a quicker method for 
handling the dynamic impacts to grid stability. Current infrastructure, processes and procedures 
are not capable of meeting future requirements and a new methodology is necessary. Reliable, 
stable, resilient forecasting is needed. State estimation is foundational for monitoring real time 
grid conditions. However, today there are not enough data points, and scalability is needed. AI is 
critical for monitoring and solving real time issues. There is a growing need for AI integration into 
the power grid, due to an increase in complexity, demand, and a reduction in overall grid inertia.  
 
In this research work we use a proactive model versus the currently used reactive model in the 
research community and the available literature where changes are not made until after an event 
has occurred. Our proposed method utilizes Common Information Model (CIM) connectivity and 
integration to implement Univariant Linear Local Trend (ULLT) to produce predictive grid state 
values and Adaptive Linear Neural Network (Adaline) to provide an optimized control signal 
value.  Generation source frequency sensor data is input to ULLT as a time sequence trend and 
predictive frequency values are generated for each generation source.  The predictive frequency 
values are processed by Adaline to obtain an optimized control value.  The system is tuned to 
utilize predictive future frequency values to correlate to the time the optimized control values 
signal is implemented. 
 
Keywords: Univariant Linear Local Trent ULLT, Adaptive Linear Neural Network Adaline, 
Common Information Model CIM, Artificial Intelligence AI, Machine learning ML, Frequency 
Synchronization. 

 
 
1. BACKGROUND AND LITERATURE REVIEW 

1.1 Standards 
The International Electro-technical Commission (IEC) developed and adopted IEC 61970-301, 
which defines the CIM and provides the guidelines for interfaces of Energy Management Systems 
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(EMSs) and Distribution Management Systems (DMS). IEC 61850 addresses control and 
protection and are useful for operations and monitoring. This CIM model is already being used in 
parts of Europe and is currently being implemented and projected to be operational in parts of 
North America through the AEP T-Nexus project. (B. Lee et al.,2015; G.A. Taylor et al., 2013; X. 
Cheng et al.,2017). 
 
The T-Nexus project is an implementation of the IEC common information model and is compliant 
with IEC 61970-301. The CIM provides a model of how the entities, data, processes, and 
relationships are represented in the models of the grid. This uniform model will allow systems to 
share data that cannot be directly shared now. It will also centralize the information, eliminating 
conflicting data in different systems. The project's long-term goals include laying the foundation 
for artificial intelligence integration into the grid, resulting in the implementation of the IEC Smart 
Grid standard 61850, as well as the greater goals of providing the foundation to allow 
communication between internal AEP systems and external entities which is IEC standard 61968 
(B. Lee et al.,2015; X. Cheng et al.,2017). 
 
1.2 Related Work 
Currently, utilities are already moving to a one-platform communications and modeling network, 
such as the T-Nexus project, which creates an integrated information environment for the grid. 
Within AEP, Transmission Planning PSSE, Protection and Control Engineering ASPEN and 
Transmission Operations EMS models are misaligned and have conflicting information. This 
increases O&M costs and disrupts grid reliability since multiple systems require subsets of the 
same data, interrupting synchronization between the systems. The CIM provides a model of how 
the entities, data, processes, and relationships are represented in the models of the grid. This 
uniform model will allow systems to share data that cannot be directly shared now. It will also 
centralize the information, eliminating conflicting data in different systems. The CIM is currently 
implemented as a Unified Modeling Language (UML) model. The CIM UML provides a visual 
model of the CIM standards' entities, processes, relationships, and data. Compliance with the 
CIM UML is requisite for the sharing and utilizing of the data. IEC 61970-301 is built off UML 
addressing electric power energy and provides standardized semantics and syntactic 
interoperability. This implementation of the CIM is also the first large-scale integration of these 
standards in North America.(AEP, 2017; G.A. Taylor et al., 2013, Siemens AG, 2017). Model 
credibility will be enhanced through automation. A CIM-based model management procedure is 
introduced to target recurrent EMS model update that is error-prohibiting and maintenance 
friendly. This will enhance smart grid interoperability by fulfilling recommendations from regulating 
authorities. It allows an effective alternative for cross-company information sharing, representing 
data management across different entities using a unified modeling language. (Siemens AG, 
2017, AEP, 2017)Once data integration has been attained through projects like T-Nexus, the data 
can be processed in an ML model such as a State Space Model (SSM) with a stochastic 
component. The data can be used to look at the impacts of grid reliability and predict the results 
of corrective measures taken. Those measures could include corrective maintenance, future 
power generation and transmission planning, predictive failure analysis, efficiency analysis, and 
response to system outages and instabilities. 
 
1.3 Research Objectives 
This paper compares current manual methods related to frequency deviation correction and 
synchronization with a new approach using ML/AI methods.  Grid frequency influences power grid 
stability and functionality as well as equipment maintenance. Low frequency results in lowered 
reactance and increased current flow, which may exceed current ratings on equipment.  Large 
frequency differentials between generation units create harmonic distortion also resulting in 
damaged equipment, potentially leading to maintenance issues and shorter life spans on 
equipment which already have significant supply chain issues and large costs.  More importantly, 
extended outage duration can inadvertently induce loss of life.  
 
Additional challenges are introduced with variable energy sources which can change dynamically 
because of sudden changes in load or capacity. The frequency of photovoltaics can change 
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rapidly, while the frequency of a gas turbine will not change quickly comparatively since there is 
more inertia. The use of DERs creates more dynamics since generation fluctuates more rapidly. 
DERs are often used as a supplemental generation source, however, this is shifting as society 
pushes for more renewable energy on the grid. This shift has already begun in Texas with 42 % 
of current generation sources being renewable. This often creates a need for additional generator 
source capacity such as storage or non-renewable sources such as coal to stabilize the 
frequency to prevent load shedding and power outages. Currently this is managed with 
renewable curtailment or gas. Renewable curtailment intentionally restricts output of renewable 
generation sources to prevent grid overloads, balance energy generations supply or due to 
transmission constraints. Grid balancing is necessary due to varying load requirements. As a 
protective measure, generation sources may be taken offline, or load shedding may take place 
resulting in power outages to ensure a stable grid frequency within acceptable limits is 
maintained. To reduce power outages the frequency can be predicted and managed during 
events to minimize power outages and protect equipment, reducing costs.  
 
Batteries can alleviate some issues but may also create a loss of visibility on the system. Inertia 
correlates to system strength and stability. As system inertia decreases, the rate of change of 
frequency (ROCOF) increases. This means with low inertia systems such as renewable the rate 
of frequency change is faster, creating a need for a quicker response time to prevent frequency 
from dropping too low. Reactive models are not able to identify issues until after there is a 
problem. This results in time delays which can create catastrophic repercussions for the grid. By 
initiating a proactive grid control system, not only can delays be minimized by predictive models 
but as a byproduct can result in a reduction in equipment damage and outages, increase in 
efficiency and reduction in cost. Several items should be stated. Measurement data needs to look 
ahead. There is a need to access the whole power system inertia.  Better data is needed to make 
optimized decisions. 
 
1.4 Proposed Proactive Methods 
This thesis proposes a proactive model versus the reactive model currently used. Current 
methods use a reactive model, where changes are not made until after an event has occurred. 
Frequency is regulated at the source, but the control room dictates what frequency to synchronize 
to. Currently, a go-low method is being used. There are frequency sensors at the generation 
output points that send information to SCADA. There is some variation in latency; different parts 
of the grid have different latency. The network latency can be measured for each generation 
station since there are different transmission methods such as fiber, LORA and satellite with 
various protocols such as ICCP. Without empirical data from the grid, actual latency can’t be 
determined and is not within the scope of this paper. This proactive method replaces the control 
rooms’ decisions with an automated system. The load is not uniform across the system. The load 
is non-linear and there is a differential that needs to be controlled. An automated control room will 
use AI to provide proactive optimized predictive control in place of the manual control room 
process. 
 
The proposed method utilizes CIM connectivity and integration to implement ULLT to produce 
predictive grid state values and Adaline to provide an optimized control signal value. 

 
2. MACHINE LEARNING AND AI TOOL 

2.1 Univariant Linear Local Trend 
The ULLT uses State Space Model for Maximum Likelihood Estimation (MLE) with Kalman 
filtering. The machine learning ULLT algorithm also incorporates Gaussian noise as a stochastic 
component. The following equations are from reference (Commandeur et al., 2007; Durbin et al. 
2012). 
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A general state space model is given by Eq. 1.  
 ��= ���� + �� + ����	
= �� �� + �� + 
��� Equation (1) 

The first equation �� denotes the observation vector at time �, �� denotes the (unobserved) state 
vector at time �. The ��, �� , 
� , �� , ��, and �� describe the process design, transition, selection, 
obs_intercept, state_intercept, state_cov, respectively and the irregular components are given by: 
 �� ∼ ��0, ��� 

�� ∼ ��0, ��� 

A more efficient method than the current frequency control methods will be required and will 
incorporate predictions of the frequency changes due to the increased renewable energy sources 
(RES) that have low inertia. The stochastic model will provide a way for the system to predict 
changes in frequency and adjust ahead of time to prevent outages. These predictions can be 
utilized by the artificial intelligence tool to determine an optimized frequency synchronization 
control value.  The evolution of AI integration into the grid is well predicted and further research is 
needed. (U.S. Department of Energy, 2024). 
 
Local Linear Trend model equation (trend component) given by reference (Durbin et al. 2012). 
 

 

The term �� (observations) is univariate. The slope term is ��, where �� and �� are serially 
independent (uncorrelated) random variables with zero means and constant variances. The trend 
is linear if �� = �� = 0 then �� + 1 = �� = �, and �� + 1 = �� + �. This reduces to the deterministic 
linear trend plus noise model. The trend level and slope vary over time if ��� > 0 and ��� > 0. 
 
The univariate structural time series model may also be written in state space form.  

��= �1 0� !��"�
# + ��

!��	
"�	

#= $1 10 1% !��"�

# + !����
# 

State vector ������& 

State error vector ������& 

For the local linear trend model, see the observation equation. 

y� = �� + (� + �t, t = 1, … , n. 

To represent in state space form the state vector is 

�� = ��� "� (� (�,
 … (�,-	��& 

 

��  = �� + ��         �� ∼ ��0, ��2�
��+1 = �� + "� + ��         �� ∼ �00, ��21
"�+1 = "� + ��         �� ∼ �00, ��21
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and the system matrices are 

�� = 0�234, �2541, �� = diag0�234, �2541,

� = diag0
234, 
2541, �� = diag0�234, �2541, 

Where 

 
Parameters are estimated in the variance and covariance matrices. 

��= 2�:�4
��= ;�<� 0

0 �=�
> 

Observation disturbance covariance matrix �� 

Disturbance covariance matrix �� 

Variance parameters ( ���������� 

In its simplest form, the state space model represents a mathematics model of a physical system. 
In the context of machine leaning the SSMs represent a dynamic system. This makes the SSM 
model useful in time series analysis such as the ULLT model. This is a custom model. The 
Kalman filter adds functionality for maximum likelihood estimation.  
 
In addition, the stochastic component Gaussian distributed noise is added to the dataset to help 
improve the performance of the machine learning model. This is necessary because models can 
learn to recognize and filter out the noise, making them more resilient to new, unseen data. 
Gaussian noise follows a normal distribution centered around the mean. In this scenario it is used 
for adding randomness. This is applicable due to the varying generation sources requirements on 
the grid caused by unpredictable climate changes, outages and so forth, as well as the 
fluctuations in load.  
 
Normal distribution or Gaussian distribution is given by Eq. 2. 

?�@� = 

A�BCD E,�FGH�D

DID   Equation (2) 

Where, @ is the variable, µ is the mean, and � is the standard deviation. 

The maximum likelihood estimation is a method of estimating the parameters of an assumed 
probability distribution, given some observed data, such as nominal frequency.  
 

�2� 4 = �1,0�, �2(4 = �1,0, … ,0�,

�2� 4 = $1 10 1% , �2(4 =
⎣⎢
⎢⎢
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2� 4 = T2, 
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Series forecasting by ULLT generates a forecast for 10 sequential forecast values. This window 
can be altered. This provides 10 predicted frequencies. The last frequency is populated into the 
forecasted frequencies table for each event magnitude to be used by ADALINE to determine the 
optimal frequency for the generator sources. The power computation and samples needed for 
accuracy are not addressed in this paper. 
 
2.2 Artificial Intelligence 
According to (A.J. Abjouganrair, 2023) ADALINE is one of the AI neural networks (NN) 
fundamental models for data prediction. Some drawbacks include slow convergence, which is 
why this method has not been used much to forecast the dynamics of nonlinear systems. This 
slow convergence for ADALINE is well known (W. Zhang, 2007).The slow convergence mostly 
affects multivariate applications of ADALINE. The univariate implementation used in this process 
is minimal. 
 
In (A.J. Abjouganrair, 2023), ADALINE was used to adapt control actions to address the 
disturbance and parameter variation issues for a cart pole system (CPS). The ADALINE controller 
was capable of canceling out the effect of any disturbance and accurately predicting desired 
values, indicating its effectiveness in controlling the system. In addition, the ADALINE controller 
quickly corrected the nonlinear plant to the new targets when the targets were adjusted. 
Simulation results proved the system could handle uncertainties by introducing variances when 
ADALINE is applied to the Nonlinear CPS model(A.J. Abjouganrair, 2023).In (G.S Chawda et. Al, 
2022) ADALINE-LMS is characterized by adaptiveness, low computational burden and fast 
response. This is a popular training scheme for ADALINE which can be used online to 
significantly reduce the computation and storage requirements (M. Qasim, 2014). Also, 
GADALLINE work (W. Zhang, 2007) shows faster convergence speed, better tracking of time 
varying parameters and low computational complexity.  
 
Adaline is a neural network that uses a supervised machine learning algorithm. A Stochastic 
Gradient Descent (SGD) Regressor is being applied. The models’ parameters are updated after 
each training sample. This allows more frequent updates and efficient adaptation for large 
datasets.  
 
Adaline is being used as a predictive optimization tool to determine the frequency for generation 
sources to synchronize with minimum frequency differentials to maintain grid balance. Additional 
considerations are being taken to calculate iterations to step frequency up or down to 60.0 Hz 
standard.    
 
We are using the Scikit-Learn library for our implementation of Adaline (Scikit-learn, 
2024)ADALINE is a linear regression model that uses supervised learning and is a type of 
machine-learning algorithm used in prediction or forecasting. It maps the data points to the most 
optimized linear functions. The regression model estimates the linear relationship between a 
dependent and one or more independent variables. The SGD is an optimization technique 
(Pedregosa et al, 2011; Scikit-learn, 2024).This implementation works with floating point values. 
The linear model is fitted by minimizing the normalized empirical loss. The predict function 
enables us to predict the optimal frequency to synchonize the varying inertial generating units to 
based on the trained model. This trained model will become more effective through each iteration 
providing a more optimized training data set (Pedregosa et al, Python Software Foundation, 
2024). 
 
Post estimation prediction derived from learning models, in this case raw frequency values, and 
forecasting output from ULLT allows the Adaline model to optimize the frequencies with a single 
value based on the future state. The output from ULLT is simply the input for Adaline. Adaline 
uses the last forecasted value in the forecasted trend for each generation source and the related 
inertial value for that specific generation source and Adaline outputs a single frequency value 
rather than the control room manual go-low method. Post estimation prediction uses the 
differential errors from the variance and covariance matrix and creates a forecasted output based 
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on these matrices and the addition of Gaussian noise to provide a stochastic forecasted output to 
be read to Adaline’s input. See Table 1. 
 
The SGD Regressor algorithm was used in Eq. 3.  
 

X�Y, Z� = 

[ ∑  [̂_
 `0�^ , ?�@^�1 + �
�Y�  Equation (3) 

 
Training examples represent @
, �
,...,@[ , �[ where xb ∈ Re and �^ ∈ R. 
The goal is to learn a linear scoring function f�x� = whx + b with model parameters w ∈ Re and 
intercept Z ∈ 
. 
 is a regularization term or penalty where � > 0 controls regularization strength. 
' ` ' is a loss function (Scikit-learn, 2024)    

 
3. GRID SIMULATION 
3.1 Preliminaries 
Multiple tools and components were used for the simulation.  Python version 3.12.2 64-bit is used 
as the primary programming language. The MariaDB Relational Database Management System 
(RDBMS) version 11.3.2 64-bit is used as a MySQL open source alternative to achieve software 
compatibility and is the database management system used to simulate the CIM.  CIM Tool 
version 1.12.0 is used to determine schema and naming to make CIM-compliant representation of 
data. This is an analogous representation of a CIM implementation, e.g. the column names in the 
MariaDB include Generating Unit. This is not a complete representation of a CIM-compliant 
database. The goal of this thesis is to build pieces of a CIM-compliant database to determine how 
the system responds with respect to the predicted grid frequencies using the ULLT and ADALINE 
algorithms with Gaussian noise as a stochastic component, for optimizing grid source frequencies 
and determine the next steps for implementation. Gaussian noise was scaled to provide 
consistent reliable results for the ULLT output for the range of the initial frequency trend 
generated for the simulation. Univariate Local Linear Trend ULLT model is a machine learning 
model using the Python Stats model library. This time series model is used for capturing trends. 
Several statistical calculations are considered including the maximum likelihood estimation and 
the Kalman filter.  
 
The generating capacity percentages were based on (Electric Reliability Council of Texas, 2024). 
Using 100 generator sources: 44 are natural gas, 25 are wind, 10 are coal, 13 are solar, 4 are 
nuclear, 3 are storage and 1 is hydro. See Table 2.The number of each type of generation source 
is representative by percentage of the current Texas grid. Inertia varies based on the generation 
source as well as other factors. The average mean inertia is provided for each generation source 
for the purpose of the simulation.  The mean inertia in seconds [s] for each of the generation 
sources is CIM model based and the specific inertial constants for each type of generation source 
were determined (D. Kraljic et al., 2022; Electric Reliability Council of Texas, 2024; National 
Renewable Energy Laboratory, 2020). See Table 1. 
 
This produces test data that is reasonable for the types of generation sources in a ratio 
representative of the real grid. The machine learning model ULLT model observes 100 
reasonable frequency sensor values from a single source at consistent time intervals.  which are 
in a table in a MySQL database. The ULLT model does not read inertia values. It only reads the 
100 sequential frequencies for each generator source based on the event magnitude in our 
simulation. 
 
The ULLT model estimates the parameters from a local linear trend model. Based on the time-
varying trend, ULLT predicts the values or frequencies for a specified time. The model produces a 
time sequence of predicted values. The closer the prediction is to the last observed value the 
more accurate the predicted value. However, sufficient time is needed to calculate the correct 
control signal value and deliver it to the generation sources. The selected time sequence 
prediction should correlate with the time required to deliver the control signal. The tenth predicted 
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value was arbitrarily selected to provide for a reasonable time of 10 seconds to calculate and 
deliver the control signal.  

 
The only way to effectively calculate this in the real grid would be through empirical data 
collection, as each grid or micro grid will have varying values.  The consideration for which time 
sequence estimated value to use is outside the scope of this paper and would be contextual to 
each application. Consideration needs to be taken when setting this parameter, which will not be 
a part of this simulation. Predictions become less reliable the further out into the future the 
predicted values are. However, the predicted value needs to be sufficiently in the future in time to 
correlate to the time that an optimized control value would be received at the generation source.  
The predicted values are generated in a time sequence by the ULLT model, and the values of 
insufficient future time allowance will be discarded.  This model could be adjusted to fit each 
implementation context by selecting a different time sequence prediction point. The effectiveness 
of this approach would be affected by the time needed to calculate the control signal value and 
the latency of the control signal value. 
 
Adaline has access to inertial values for all generator sources for each event. This (unit inertia) 
table is static. See Table 1.The inertia values are taken into consideration when determining how 
much of a frequency change each source can move in a single step. The table can be interpreted 
as follows, for example, in 5.9 Hz a nuclear generating unit on average shift 1 Hz in 5.9 seconds. 
With this understanding, a variable generation source such as solar can shift 1 Hz in effectively 
zero seconds. This is a highly dynamic low inertial source. 
 
Calculation for each generation source is required for the system to reach an optimal frequency. 
Sources with higher inertia values will not be able to adjust their frequency as quickly as low or 
non-inertia sources. This simulates our current grid as more renewable and variable generator 
sources are being integrated into the grid. This will help reduce large frequency differentials and 
reduce total harmonic distortion, prevent power outages due to large differentials and reduce the 
need for other stabilizing methods. This is a proactive solution. Several tables are considered in 
the database. ULLT outputs a certain number of future values. For the purposes of this 
simulation, we are using a tenth value which is equivalent to 10 seconds in the future prediction. 
The last value is populated into another table to be read as the input for Adaline. Adaline reads 
the last predicted value as well as the inertia value related to each generation source which is 
already stored in the database. The training set from ULLT uses reasonable values based on 
inertia but not the inertia values themselves. This simulates the unknown inertia of our current 
grid (D. Kraljic et al., 2022) The target frequency is determined based on this training set and 
preset reasonable inertia values to simulate the grid.  
 
The Adaline model is supervised. It evaluates a prediction on a given data set and returns a 
single numerical score or frequency. In this case, Adaline will determine a single target frequency 
for all the generator sources to synchronize to, based on their 'weighted' inertia values. The 
output predicts frequencies for all generator sources and determines the optimal frequency the 
generators should adjust to with minimal frequency deviation considerations. This will be 
compared to current go-low methods. The purpose of this demonstration is to determine if AI/ML 
prediction and optimization methods are a viable solution for frequency stability to maintain grid 
reliability with hybrid generations sources by comparing it with the current go-low method. 
 
3.2 Demonstration 
The Machine learning engine reads from the MySQL ‘initial trends’ table for each of the four event 
magnitudes: small, medium large and serious, which is populated with 100 generation sources 
that resembles the Texas grid. This correlation was maintained for the generation sources within 
the scope of this paper related to their inertial values provided in Table 1. 
 
For this demonstration the output of ULLT (a single predicted frequency for all generator sources 
- in this case 10 seconds out) is input into the Adaline model. These 100 'future' frequencies from 
100 varying generator sources with weighted inertia are input into Adaline. This is an optimization 
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technique used to train a model. This is being used to predict new values. Adaline determines the 
optimal frequency for each of the generator sources target value based on their inertia. See Table 
1 and Table 2. This is run four times for different event magnitudes. The event magnitudes were 
empirically tested. For simulation purposes none of the generation units went offline.  The 
maximum deviation event simulated was described as a serious event. A serious event resulted 
in the generation units with the lowest inertia falling to 59.5 Hz. For any given event the lowest 
inertia generation sources would have the greatest frequency deviation.  A value of 59.5 Hz 
deviation would be the maximum permissible deviation from 60 Hz standard while remaining 
within standard ranges for frequency deviation. For 100 samples per second the generation units 
with the lowest inertia which were set at 0.01 would need to be decremented 0.005 for an event 
magnitude to decrement from 60 Hz to 59.5 Hz in 100 samples. The large event magnitude was 
0.00375 and represented 75% of the serious event magnitude.  The medium event magnitude 
represented 50% of the serious event magnitude at 0.0025. The small event magnitude 
represented 25% of the serious event magnitude at 0.00125. This easily provided for four event 
magnitudes evenly spaced. These event magnitudes evenly spaced were chosen to evaluate the 
efficiency of the proposed methods across a reasonable range of magnitudes. 

 
4. PROCESS OVERVIEW 
4.1 Process Overview 
This solution operates as a closed feedback loop system. Fig 6.illustrates the simulation process. 
Initial SCADA data acquisition of sensor data is necessary. The sensor data is produced via 
equipment in the field. For the purpose of the simulation the MySQL database is used as an 
analog of the CIM.  The sensor data is recorded in the CIM. The machine learning algorithm 
ULLT will read sensor data from the CIM and produce predictive states for each generation 
source.  The ULLT algorithm writes the prediction to the CIM. The artificial intelligence algorithm 
Adaline reads the predictive states from the CIM and produces the optimized control value. The 
artificial intelligence algorithm writes the optimized control value to the CIM which is read by 
SCADA. The SCADA system is mathematically simulated in the simulation Python code. CIM 
compliant information is necessary for all systems to operate cohesively on the grid. SCADA uses 
the optimized control value to implement the most efficient frequency synchronization value. This 
is the proactive implementation of grid control allowing a quick response for dynamic low inertia 
or hybrid generation sources impacts on the grid systems.  
 
The following process is for proof of concept. Maintaining stable 60 Hz frequency is a 
fundamental requirement for grid operations.    
 
4.2 Results 
The scale to create consistency across varying generation sources were empirically derived. The 
max event amplitude is defined as, E/0.01 Hz/second = 0.5 Hz. 
 
The ULLT needs a minimum of 100 samples as a time sequence of frequency values to produce 
the predictive values required. Since this is representative of 100 seconds for each generation 
source, a max differential from beginning to end of sequence is 0.5 Hz. The 0.5 Hz represents the 
maximum frequency drop before the generation is taken offline. Therefore, this represents the 
largest event that this simulation would be able to provide control signals for.  
 
Where E is the event magnitude 0.005, and I is the inertial value for the generation source. To 
ensure consistency across the generation sources with varying inertia in range of 0.01 – 5.9 
Hz/second, the max event amplitude was calculated and empirically tested. The max event 
amplitude was arbitrarily calculated using the lowest inertial value for wind, photovoltaic and 
hydro generation sources, which was effectively zero. The zero value could not be used for 
mathematical calculations since dividing by zero would effectively be dividing by infinity and 
create unusable results. The significant digits were maintained. This constrained the results to 
useable data to prevent all low inertia generations sources from cascading. Cascading loads is 
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feasible, especially for serious events as experienced in the Texas Winter Storm of 2022, 
however, is not within the scope of this paper.  
 
Subsequently, a decrement value was needed to offset the 100 nominal frequency values to be 
used for the initial table fed into ULLT.  

 
0.005/0.1 = 0.5 /100 = 0.005 Hz /second decrement steps for max event with a minimal inertia.  
 
The maximum inertia 5.9 Hz/second represents the nuclear generation units.  
 
0.0005/5.9 = 0.0000847/100 Hz /second = 0.000000847 decrement steps for minimum event with 
maximum inertia.  
 
To ensure model accuracy and true stochastic grid nature and efficacy, several tests were 
performed. Grid forming and grid following methods are evaluated and compared to the ML/AI 
methods. Both methods have some latency. The current approach sets all generation sources 
low to reduce differential and then walks the sources to 60 Hz. There are several reasons to 
improve this. Smaller inertia systems move too quickly for the control room to respond to, and the 
grid is unpredictable. The traditional approach is challenging for highly dynamic systems. 
Currently the dynamism of the grid is increasing at a significant rate. The time it takes each 
method to convergence is evaluated by calculating the time differentials. Comparison is 
accomplished by counting the number of cycles until convergence for both methods.  
 
Four tests were run, each representing four different event magnitudes. These magnitudes 
include small, medium, large, and serious. These event magnitudes are represented 
mathematically above. For illustrative purposes, the Texas Winter Storm 2021 would be 
categorized as serious.  
 
The algorithm will simulate and determine the time to reach frequency synchronization of all 
generation sources. Steering is introduced mathematically. The simulation produced 812 files. 
The State Space Model Results were produced for each generating unit for each magnitude 
producing four-hundred images. See Fig3. The observation, one step-ahead prediction and 
forecast was also produced for each generation unit for each magnitude resulting in four-hundred 
additional images. See Fig4. and Fig5. In addition, the optimum control frequency for the 
generation units to synchronize to is provided for each four event magnitudes. Lastly, there were 
four text files produced which provide the efficiency gain percent for each event magnitude when 
comparing the current go-low method to AI/ML optimization.  
 
The algorithm was the most efficient for serious event magnitudes, producing roughly 45.76 
percent more efficiency than current go-low methods. See Table 3. The large event magnitude 
shows an average of 42.78 percent greater efficiency.  The medium event magnitude shows an 
average 36.82 percent greater efficiency. The small event magnitude shows an average of 18.9 
percent greater efficiency than current go-low methods. These percentages were determined with 
the following process and subsequent equation. See Table 3. 
 
The go-low value was determined by taking the minimum value from the last row of the 100 
generation sources frequency values. This go-low differential was subtracted from the optimal 
60.0 Hz value. The optimal differential determined by the ADALINE algorithm was also subtracted 
by the optimal 60.0 Hz value.  
 
golowdiff = 60.0 – golowvalue 
 
optimaldiff = 60.0 – optimalvalue 
 
To compare both methods the optimal differential was divided by the go-low differential. 
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efficiencygainpercent = 100 - (efficiencygainraw * 100). 
 
This provides a reasonable value for simulating in a static system. This value would not be static 
in the real world. The grid operates as a multivariate stochastic system. The Gaussian noise was 
adjusted empirically.  
 
This will allow frequency to not only optimize to a single value but walk back to 60 Hz. in the most 
optimized path. Through each iteration of ADALINE this will become more efficient and therefore 
more reliable. Since the algorithm determines the optimal frequency to synchronize to for 
minimum frequency deviation, the frequency will not typically synchronize at 60 Hz due to inertia, 
load demand and other factors. See Fig1. and Fig2. 

 
The RDBMS, MySQL simulates the CIM in the data base using the SQL language. IEC 61970 
CIM schema utilizing, CIM Tool to simulate our emerging grid which will allow all components to 
meet and communicate in the same language and semantics has been integrated to mimic the 
future grid implementations currently in process. 

 
The purpose of this thesis is to determine the most reliable method for grid stability in relation to 
frequency variation. The real-world grid would be dynamic and require empirical testing for the 
optimized timing parameter.  To be fully implemented in the most effective way would require a 
multivariant versus a univariant approach.  However, each component must first be approached 
and dealt with in a univariant manner.  Validation of each univariant component would be required 
before integrating multivariate components. 

 
While the current go-low method produces similar optimization for small events, climate change 
and other fore mentioned shifts such as EV charging will increase the likelihood of bigger events 
which may necessitate AI/ML in the future grid. A smart grid may be the most efficient method for 
handling the stochastic nature of the grid in the future.  

 
5. CONCLUSION AND FUTURE WORK 
5.1 Conclusions 
The grid is a stochastic system as a result of fluctuating load as well as temperature and other 
factors.  Introducing more instability to the system creates more dynamism. One result is more 
frequent large and serious events. These events can be difficult to manage with our current go-
low methods and can benefit from a smart grid.  
 
The CIM will allow different Regional Transmission Organizations (RTOs) to communicate with 
the same data semantics and nomenclature and share data. CIM translates it regardless of the 
semantics and nomenclature of individual systems. All systems will be capable of utilizing the 
same ontology even if the systems’ native ontology is different. T-Nexus is a centralized system 
for all systems that all RTOs can connect to it. Then, RTOs such as ERCOT can connect to it, 
and all will adopt all CIM nomenclature and topology. T-NEXUS matches all the systems such as 
SCADA, EMS, and Planning.  T-Nexus is the authoritative data for all their systems. Everything 
will match T-Nexus. It will translate, for example, from EMS to SCADA. A change in SCADA will 
be read to EMS, and so forth, reducing staff and increasing profit with more reliability since so 
many people won’t need to make the translations but reliability from data inconsistencies will be 
resolved. Data normalization and a shared ontology are required for full automation.   
 
With a focus on grid resiliency due to extreme weather events such as wildfires and flooding, load 
growth, and affordability, AI and Automation are tools, but sufficient digital data and global data 
that AI can process is needed.  Another huge concern is allowing low inertia, highly dynamic 
generation sources connection to distribution without understanding the impact to the grid. 
Software needs to aggregate data to be used for AI.  
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5.2 Future Grid 
Multiple opportunities for tuning are available. Additional consideration can be incorporated for 
future work. Simulated states can be configured by creating excessive demand and activating 
load shedding and/or taking generators spontaneously offline to simulate RES limitations and 
real-world applications. This will allow methods to mimic changes to the grid and will include both 
random and selected generators to simulate various environments.  During the 2021 Texas 
Winter Storm the frequency fell to 59.302 Hz. According to (M. Lozano, 2021), if the grid had 
dropped below the 59.4 Hz threshold for more than 9 minutes it would have triggered a cascading 
failure of the grid.    

 
6. FIGURES AND TABLES 

 
FIGURE 1: Optimum Control Frequency_serious. The optimal frequency for a Serous event magnitude is 
approximately 59.732. The optimal frequency float is written to a text file. The grid is a stochastic system 
because of fluctuating load as well as temperature and other factors.  Introducing more instability or low 

inertia generation sources to the system creates more dynamism. 

 
FIGURE 2: Optimum Control Frequency_small. The optimal frequency for a small event magnitude is 

approximately 59.900. The optimal frequency float is written to a text file. Frequency is better maintained for 
smaller events. 
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FIGURE 3: GeneratingUnit100_serious_StateSpaceModelResults (Wind) 0.01Hz/second. This is the output 
of the state space model. The unobserved components are a univariate time series decomposed into a 
trend. It’s a structural time series model. This is the output of the state space model. The unobserved 

components are a univariate time series decomposed into a trend. It’s a structural time series model. The 
Unobserved Components Results include standard errors, z-statistics and prediction or forecasting. The 

unobserved components results are provided for each generating unit for each event magnitude. This is an 
example of the GeneratingUnit100 for a serious event magnitude. 

 
 

FIGURE 4: GeneratingUnit1_serious (Nuclear) 5.9 Hz/second. The 100 observations, one-step-ahead 
prediction and forecast are available for each frequency value for each event magnitude. Referencing the 
SQL table forecast_output_serious the 10

th
 prediction value for the nuclear generation source is 59.99919. 

The high inertia generation source is maintaining a reasonable frequency for the serious event. 
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FIGURE 5: GeneratingUnit60_serious (Solar) 0.01 Hz/second.The 100 observations, one-step-ahead 

prediction and forecast are available for each frequency value for each event magnitude. Referencing the 
SQL table forecast_output_serious the 10

th
 prediction value for the solar photovoltaic generation source is 

59.455. The low inertia generation source is continuing to decrement for the serious event. 

 
 
 

 
 

FIGURE 6: Smart Grid Cycle M/L and AI tools would require integration with multiple grid systems to 
implement automated control solutions.  CIM implementation provides the shared data repositories and 

communication pathways. 
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Generating Unit Type Mean Inertia 

Nuclear 5.9 

Natural Gas Turbine 4.2 

Coal Turbine 4.2 

Hydroelctric 2.4 

Solar Photovoltaic Effectively Zero (Implemented Experimentally as 
0.01) 

Wind Turbine Effectively Zero (Implemented Experimentally as 
0.01) 

Large Scale Storage Effectively Zero (Implemented Experimentally as 
0.01) 

 
TABLE 1: Generating Unit Types and Mean Inertia [16, 21, 23]. The generation sources are representative 
of the Texas grid. Nuclear has the highest inertia at approximately 5.9 Hz/second followed by Natural Gas 

and Coal Turbines at 4.2 Hz/seconds. Hydroelectric has minimal inertia averaging 2.4 Hz/second. The Solar 
Photovoltaic, Wind Turbine, and Large-Scale storage is effectively zero.  A 0.01 value was used for 

mathematical calculation as 0.00 can interfere with computer mathematics. 

 
 

Generating Unit Type Number Of Units Proportionate to Texas 
Grid 

Nuclear 4 

Natural Gas Turbine 44 

Coal Turbine 10 

Hydroelctric 1 

Solar Photovoltaic 13 

Wind Turbine 25 

Large Scale Storage 3 

 
TABLE 2: Generating Unit Counts by Type. The generation sources are representative of the Texas grid. 
Currently roughly 42% of the Texas grid is utilizing renewable energy sources. (RES). Traditional energy 
sources include Nuclear, Natural Gas Turbine and Coal Turbine. The RES include Hydroelectric,  Solar 

Photovoltaic, Wind Turbine, and Large Scale Storage. 

 
 

Event Magnitude Small Medium Large Serious 
Efficiency Gain 
Percent 18.85 36.82 42.78 45.76 

 

TABLE 3: efficiency_gain_percent AI/ML and go-low comparisons. This table represents the percentage of 
efficiency gain of the AI/ML method over the go-low method. The more serious events have the greater 

efficiency gain percent. The AI/ML method will be most efficacious for serious event magnitudes. The small 
event magnitude is 18.85%. efficiency. The medium event magnitude of 36.82%. The large event magnitude 

is 42.78% and the serious event magnitude is 45.76%. efficiency. 
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