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Abstract 

 
This algorithm seeks to create a thresholding surface (also referred to as an active surface) 
derived from the initial image topology by means which minimize the image gradient, resulting in 
a smoothed image which can be used for adaptive thresholding. Unlike approaches which 
interpolate through points usually associated with high gradient values, each image point is 
uniquely characterized by a quadratic cost function determined by the gradient at that point along 
with a constraining potential determined by the image intensity. Minimization is achieved by 
allowing each point to deviate from its initial value so as to minimize the gradient, as balanced by 
a constraining potential which seeks to minimize the amount of deviation. The cost function also 
contains terms which cause the gradient of the thresholding surface to closely parallel those of 
the image in regions of near uniform intensity (where the absolute values of the gradients are 
small). This is done to reduce the effects of ghosting (or false segmenting) when thresholding, an 
important feature of this approach. Image binarization is achieved by comparing the values of the 
original image points with those of the thresholding surface; values above a given threshold are 
considered part of the foreground, while those below are considered part of the background. 

Keywords: Image Segmentation, Adaptive Threshold, Active Surface, Gradient Minimization, 
Thresholding Surface. 

 

1. INTRODUCTION 
Image segmentation, the process by which an image is partitioned into regions deemed 
homogeneous based on some set of criteria (usually intensity), can be a challenging problem, 
particularly when lighting conditions are not optimal or are changing over time. These situations, 
where lighting cannot be completely controlled, arise in many machine vision applications, such 
as systems which need to operator outdoors for example, where ambient lighting is a factor and 
where the field of view is large enough to make even illumination difficult or impossible. In many 
of these instances a single threshold cannot be found which will adequately segment the image 
because of the changes in illumination over the scene, which can vary significantly over time, so 
attempting to remove these variations by modeling meets with limited success. This necessitates 
the need to threshold locally using adaptive thresholding methods. The most common methods 
for adaptive thresholding usually compare the intensity of an image point with that of the local 
mean or median calculated from a window of it' s neighboring points. These techniques work well 
when most of the pixels belong to the background, and the items of interest are small, such as 
printed text obscured by a shadow on some portion of the page. But this technique has difficult 
identifying large regions which cannot be completely covered by such a window because of their 
size. Alternatively, methods based on active surface modeling can be used to create a smoothed 
interpretation of the initial image whose intensities, when compared to those of the original image, 
can be used for thresholding in a manner similar to that of other adaptive thresholding methods. 
The method proposed herein was inspired by this idea, and proposes another active surface 
based model for adaptive thresholding. 

2. THRESHOLDING APPROACHES 
In summary, image segmentation partitions an image into regions, uniform with respect to some 
property of the image, such as intensity or texture, which has been determined as appropriate for 
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separating the objects of interest from those that are not. This partitioning occurs by determining 
one or more thresholds for the property in question, calculated either globally or locally and 
possibly in conjugation with other properties (such as the image gradient) which can then be used 
to separate the image into regions of interest. A good review of image segmenting techniques is 
provided by A. M. Khan[1]. Situations where only a single threshold is sought for segmentation is 
referred to as binarization. Here pixels are either assigned to the foreground, meaning regions of 
interest, or to the background, indicating areas of the image which are of no interest. Being able 
to simplify a gray scale image in this manner often simplifies the task of understanding the image 
by subsequent processes, whether they be algorithmic or neural network in nature. This is 
particularly true in the field of medical imaging, and in the area of document image analysis, as 
discussed by Nagy[21]. 

2.1 Global Thresholding 
Global thresholding indicates only a single threshold is used for segmenting the entire image, the 
thresholding value is not a function of position. When the pixel property of interest is intensity, the 
global threshold is usually obtained by examining the image's intensity histogram. For some 
images, particularly those with high contrast between the fore ground and the back ground (such 
as print on page), the clear bi-modal nature of the histogram simplifies the threshold selection. 
When this is not the case, automatic thresholding techniques such as Otsu's method [25] can be 
applied. Most automatic thresholding techniques examine the grayscale histogram in an attempt 
to identify it's two major modes or classes. In Otsu's method, the threshold is chosen such that 
the variance within each of the two classes is minimized. In another approach, proposed by Arifin, 
intra class variance is used to merge similar classes, a process which continues iteratively until 
only two classes remain[3]. Global thresholding techniques can also be applied over small 
regions, usually created from a rectangular partitioning of the image, from which local thresholds 
can be derived, as in the method of Chow and Kaneko, to be discussed later. In addition to 
segmentation based on thresholds, probabilistic, iterative-relaxation classification methods, which 
eliminate the need for threshold selection, have been proposed, see Bonnet[20]. For more 
complex images, banded thresholding or multi-thresholding techniques might be appropriate. A 
good discussion of such methods is provided by Sonka, HLavac

 
, and Boyle[19] and by Sezgin 

and Sankur[18]. A comprehensive review of thresholding methods, including edge detection, 
fuzzy sets, and clustering techniques is provided by Pal[23]. Instead of indentifying thresholds for 
segmentation, regions can be created based on local uniformity using region growing techniques 
as well, as discussed by A. M. Khan[2], or by identifying distinct regions, initially determined by 
the zero crossing of the Laplacian, followed by an iterative smoothing and statistical means 
testing to determine stable regions from which thresholds can be extracted, see Tabbone[31]. 

2.2 Local Thresholding 
For images were a single threshold is not sufficient local (or adaptive) thresholding techniques 
can be applied. With these methods thresholding becomes a function of position. Such methods 
usually use the mean, standard deviation, medium, or intensity range, calculated from the 
intensities within a window about each pixel, to create a threshold value. Any pixel whose 
intensity exceeds by some amount that of the function performed over the window are classified 
as part of fore ground, while all others are considered part of the back ground. Several common 
methods, listed below, will be considered when evaluating the performance of the proposed 
method: 

Niblack's method - Here the threshold is determined from the mean µ and standard deviation σ 
computed within a window centered about the pixel to be threshold. If the center pixel's value is 
greater than (µ + kσ), where k is user defined, the pixel is considered part of the foreground, 
otherwise it's considered part of the background. 

Bernsen's method - Here the threshold is determined as the average of the minimum and 
maximum values found within a window centered about the pixel to be threshold, however if the 
contrast, defined as the difference between the maximum and minimum, is less than some value, 
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the region is assumed uniform, and the pixel is assigned to either the foreground or background 
based on it's intensity value, see Bernsen[5]. 

Mean or C-Mean method - Here the threshold is determined as the mean of the gray scale values 
within the window. Pixels are assigned to the foreground if they are greater than the mean by a 
constant amount "C". 

MidGray method - Here the threshold is determined as the average of the minimum and 
maximum values found within a window centered about the pixel to be threshold. Pixels are 
assigned to the foreground if they are greater than the mid-gray by a constant amount "C". 

Sauvola's method - This approach partitions an image into equally sized rectangular regions and 
evaluates each partition for uniformity, based on this uniformity metric an approach is selected. In 
non-uniform regions a threshold is calculated using a criteria similar to Niblack's method. If the 

center pixel's value is greater than the threshold given by the formula         
 

 
    , 

where k is user defined and R=128, the pixel is considered part of the foreground, otherwise it's 
considered part of the background, see Sauvola[13]. 

Phansalkar's method - Similar in approach to Sauvola's method only with an additional term 
based on the mean to help handle images with low contrast, the threshold value is determined by 

the formula               
 

 
    , with p and q typically set to 2 an 10 respectively, see 

Phansalkar[22]. 

A description for each of the algorithms applied can also be found in the ImageJ documentation 
web page[15]. Descriptions for Niblack's method and Brensen's method can be found in 
Blayvas[11], along with detailed descriptions found in Singh[32].  

2.3 Edges and Contours 
The creation of contours using edge detectors is a common segmentation method based not on 
intensity, but rather the gradient of the image. With such approaches, changes in intensity mark 
the boundaries between different regions. These boundaries are usually created by initially 
thresholding the image gradient, followed by non-maximal edge suppression and hysteresis to 
join separate edges into complete contours. A discussion of one such approach, Canny edge 
detection, is provided by Justin Liang[17]. One difficulty with edge based contouring is that many 
of the contours are not closed, and segmentation is not complete. This occurs because the 
gradient strength around the boundary of an object can vary considerably, perhaps from 
variations in lighting or texture which may be present, obscuring the boundary. To address this 
algorithms which use both the gradient, a local measure of intensity change, along with texture 
have been proposed by David Martin[9]. 

2.4 Active Contours 
Active contours perform segmentation by means of a deformable contour whose final shape 
depends on the image and the energy function to be minimized. The process begins with an initial 
contour whose shape is successively changed over multiple iterations until a local minimum is 
found for the energy function. Forces for evolving the contour are usually determined from either 
the gradient information, or information based on image intensity. One of the motivations for using 
such approaches is to guarantee a closed boundary for the segmented region, unlike the 
boundaries generated from edge information alone, which often have discontinuities. The use of 
level set functions to generate active contours is discussed by Chan and Vese[33]. In this 
approach contour formation evolves over "time" from some initial level set until the energy 
functional is minimized, which is accomplished by setting up and solving the appropriate Euler-
Lagrange partial differential equation.  
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2.5 Thresholding or Active Surfaces 
Active surface modeling, much like dynamic thresholding, creates a smoothed interpretation of 
the initial image  which, when compared to the original image, can be used for binary 
thresholding. These algorithms typically use gradient information to identify regions where the 
image is changing, and the gray values associated with these edges are used to define points 
(sometimes referred to as supporting points) through which the active surface interpolates. 
Discussions on the construction of such active surfaces and how they are used for adaptive 
thresholding are provided by Yanowitz and Bruckstien[30], I. Blayvas et al., where optimizations 
to the method of Yanowitz and Bruckstien are discussed [11] and by Fei Liu[10]. Once 
constructed, segmentation is performed by comparing the value of the active surface with that of 
the original image, points for which the values of the active surface are less than those of the 
original image are considered foreground points, and those for which the values of the active 
surface are greater than those of the original image are considered background points. In addition 
to problems with constructing interpolating surfaces (such as choosing the interpolating points, 
and functions to use for interpolation) problems also arise when the active surface intersects the 
image topology away from the interpolating points. Ideally the active surface should only intersect 
the image topology at the interpolating points, everywhere else the active surface is strictly 
greater than or strictly less than the image topology. This phenomena, sometimes referred to as 
"ghosting", results in a false segmentation of the image. The approach detailed by Fei Liu[10], for 
example, address this problem by using a repulsive force which moves the active surface away 
from the initial image everywhere, with the stable solution ideally interpolating between points 
where the gradient is highest. In addition to these approaches, the method of Chow and Kaneko 
may be applied. This method creates a set of thresholds from an overlapping rectangular 
partitioning of the image by applying Otsu's method (or some other means for automatic 
threshold detection) to each region. Interpolation is performed over the set of thresholds to obtain 
a local threshold at each point in the image[7]. 

2.6 Proposed Approach 
The proposed algorithm creates an active surface, derived from the initial image topology, for the 
purposes of binary segmentation. As such, it can be grouped with local thresholding methods, or 
any method which creates as part of it's segmentation process a threshold map from which local 
thresholding values are derived. As such the proposed method does not seek to find a single 
threshold or set of thresholds to be used to segment the image globally. The proposed approach 
belongs with active surface methods. These methods regard the image as a topological map, with 
gray value expressed as height, and then seek to minimize an energy functional, balancing the 
minimization of the internal energy of the surface (usually expressed as the square of the 
gradient) with the effects of a restorative potential which seeks to limits this minimization. 
 
In the proposed approach, each image point is characterized by a simple quadratic equation, 
derived from the image gradient in combination with a constraining potential, derived from the 
image intensity. In addition to these two terms, to prevent the active surface from intersecting the 
image topology in regions of uniformity (or ghosting, as described above) a term is introduced 
which forces the gradient of the active surface to follow that of the image topology in these 
regions. The effect of this term is weighted by the gradient of the image so that in regions where 
the gradient is large no contour following occurs, but it's influence increases to become the 
predominate term in uniform regions. These terms together create a set of quadratic equations 
which are simultaneously optimized, with the solution set being the desired active surface. Binary 
segmentation is achieved, as described above, by comparing the intensities of the original image 
points with those of the active surface;  points above the surface are considered part of the 
foreground, while those below the surface are considered part of the background.  

The proposed approach differs from the previously described methods in a number of ways: 

1. Unlike many local thresholding methods, the image is not processed using a pre-determined 
window of fixed size. 
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2. Unlike the method of Chow and Kaneko, or that of Yanowitz and Bruckstien, the thresholding 
surface is not determined by interpolating over a set of thresholds. 

3. Unlike active contour or level set method, there is no initial contour which must be described, 
and no knowledge of how long the final contour will be is needed in order to guide a solution. 

4. No differential or non-linear equations are involved in determining the thresholding surface, 
the solution is determined by a set of linear equations, for which there is an exact solution. 

With this approach the solution does not evolve over "time", like active contours or like the active 
surface proposed by Fei Liu, but is solved for directly and uniquely by linear means. Unlike the 
active surface approach of Yanowitz and Bruckstien, no interpolating surface is derived, nor is it 
necessary to find edges explicitly or define a set of supporting points and functions for 
interpolating between them. There is also no need to define the behavior of the thresholding 
surface at the boundary of the area of interest. And, unlike local adaptive thresholding methods, 
there's no need to define a window based on the feature size of interest to perform image 
smoothing. 

To create a set of equations implementing the above described approach, it is necessary to start 
by connecting neighboring points, then the square of the gradient between these points is 
calculated and it's sum computed. Next, a term is added which seeks to keep the gradient parallel 
to itself. These terms are both a function of the gradient, and are weighted in such a way that the 
first is weighted significantly higher than the second in the regions where the gradient is highest, 
and the second term weighted significantly higher than the first in the regions where the gradient 
is lowest. For simplicity, these weights are computed once and are based only on the gradient of 
the original image. Finally, a constraining potential which increases as points move away from 
their initial position is introduced. With these terms, during optimization the gradients which are 
initially high will be reduced, those which are initially low will remain approximately the same, and 
the amount each point moves will be limited by the constraining potential. Since only height is 
allowed to vary, the equation to be optimized can be written as a function of height only: 

(1)                                         
 
          

             

Where        is the potential constraining the motion of    during optimization,          is the 

gradient between the ith point and it's kth connecting point, with       being it's initial value, and 

      and       are the weights associated with the two gradient dependent terms. These weights 

are strictly a function of      , any weights which can enforce the behavior discussed above can 

be used but this would typically be some monotonically decreasing function such as:  

            
           and correspondingly                      with        

The gradient terms are a function of    only, and can be expressed as follows: 

(2)                        where            
       

  
   

 

 and             ,             , and             

Many different forms can be used for the constraining potential       , the only requirement being 

that as    moves away from it's initial value of     the value of        increases monotonically, thus 
acting as a restoring force balancing the drive to minimize the remaining terms. Practically, a 
simple quadratic potential works best: 

(3)                    
   where       

Substituting for        and for       , since it is a function of      , yields: 

 (4)         
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In order to find the values of    which optimize (1) it is necessary to solve the set of equations 

obtained from: 

(5)              

This yields a set of linear equation with the form: 

(6)                                                                    

Grouping like terms yields: 

(7)                                                 where               

Expressing (7) in terms of    yields: 

(8)                                                               

Where    is the total number of points connected to the ith point. With (8) every point is now 
represented by a simple linear equation, with the solution set to these equations representing the 
desired thresholding surface. 

2.7 Implementation 

To solve for the set of    described by (8), linear solutions methods are directly applicable as the 

problem can be cast in the familiar form of     . Since each point will be expressed by an 

equation, and each equation only contains terms from the connecting points, the matrix   will be 
large and sparse so techniques best suited for this should be applied[29]. Iterative techniques 
such as the conjugate-gradient method [4] provide the means for solving such systems with 
greater speed than non-iterative techniques, and they were employed in the implementation of 
this strategy. 

Next it is necessary to define the values for   . One solution would be to set      for all    

where   is any constant such that    . But the values for    need not all be the same; another 
solution would be to chose the values for    to preserve local uniformity, by which is meant any 
region where the curvature is sufficiently small and intensity is not varying rapidly. One way to 
achieve this would be to allow the individual points greater or lesser freedom to move based on 
local uniformity; points from uniform regions will be allowed more freedom to move than points 
from less uniform regions making it easier for the optimization to parallel the transformed regions. 
This can be accomplished simply by adjusting the values for    on a point by point basis, with 

points from uniform regions having smaller values for    than those from less uniform regions. 

Using the local curvature    (as expressed by the Laplacian, for example) as a measure of 

uniformity,    can be calculated as follows: 

(9)                            else 

                               

                    

So when          where     is the minimum curvature of a locally uniform region, then     , 
meaning no constraints are applied to    during optimization. The value for      can be chosen by 
using a priori knowledge about the image, or automatically by creating a histogram of all values 
for      and deciding      based on some percentage of the histogram values. The parameter   is 
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chosen to determine the asymptotic behavior of    with respect to  . Once again, this can be 

obtained from knowledge about the image, but results are not very sensitive to values of  ; for all 
test cases    . Similarly the values for      and ρ are chosen to determine the amount of 

contour following. Large values for      cause terms associated with contour following to 
predominate the solution, while large values for ρ causes the effects of these terms to be quickly 
minimized. The effect of optimizing with this approach is to create a smoothed image, as will be 
evident from the examples provided below. 

3. IMAGE SEGMENTATION 
Once a smoothed image has been obtained through optimization, image segmentation can be 
performed by comparing the intensities of the original image with those of the smoothed image. 
The points       which define the original image can be divided into background image points,   , 

and foreground image points,   , with the following formula: 

(10)                        where   can assume any value, although 0 would be typical, 

and     and       are the initial and final values for   . 

As (10) implies, image points whose smoothed intensity is less than it's initial intensity by the 
amount   shall be considered foreground image points, all other points belong to the background. 

Examples of applying this algorithm are provided below. 

3.1 Experimental Results 

For the weight function      , experimenting with different values of      showed that          

works best, providing a good compromise between contour following and computational intensity, 

and this value is used for all examples. Also, ρ = 1.0 and            for all             was 

used for all cases.  

3.2 Synthetic Example 
A synthetic example will help to illustrate how the algorithm works. Consider the discontinuous 
curve defined by the function: 

                                                          

For the purposes of testing, a 128x256 image was created with                and with 

     mapped to grayscale values between 0 and 255. The original image and the results of 

optimizing with two different values for   and       are shown: 

 
Original Test Image 

 
Smoothed Image with             
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Smoothed Image with                

 
Segmented Image with     

 
A cross-sectional plot of data taken through the middle of the images  is shown below: 

 

The data from "Series1" is from the original image, the data from "Series2" is from the optimized 
image with             and the data from "Series3" is from the optimized image with   
            . Note that the smoothed data, except for being shifted laterally, follows the 
contour defined by the original data. As (9) suggests, decreasing values of   and increasing 

values of       allow the data to shift further from it' s original position during optimization. In the 

above example, the largest slope values occur at x=128, where      is discontinuous. From the 
above graph, it can be seen that optimization causes these slope values to be reduced, causing 
the two continuous regions to move towards each other, while the slopes within these continuous 
regions remain parallel to themselves. 

3.3 Image Metrics 
This section discusses the metrics to be used to determine how well the proposed algorithm 
performs at segmenting a series of images. For some of the images considered a quantitative 
analysis, obtained by comparing various algorithms, including the proposed approach, against a 
ground truth segmentation, will be provided. To evaluate the results of the various segmentation 
algorithms applied two different segmentation metrics are calculated. The first metric is 
"Intersection over Union" or "IoU" and is described by Jeremy Jordan[14]. The IoU metric is 
defined as the ratio of the intersection of the results of segmentation with the ground  truth 
segmentation over the union of the results of segmentation with the ground  truth segmentation: 

                       

Where    is the segmentation produced by the algorithm and     is the ground  truth 
segmentation. The next set of metrics considered relate to pixel accuracy. With these approaches 
an analysis is performed pixel by pixel to determine if it's been classified correctly with respect to 
the ground truth image. Explanation for the various methods discussed below are given by Paul 
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Rosin[27]. Each pixel receives one of four classifications: True positive (TP), were the segmented 
pixel is properly identified as belonging to the object (as defined by the ground truth image); True 
negative (TN), were the segmented pixel is properly identified as belonging to the background; 
False positive (FP), were the segmented pixel is improperly identified as belonging to the object, 
instead of the background; False negative (FN), were the segmented pixel is improperly identified 
as belonging to the background, instead of the object. Pixel accuracy (PA) is defined as the ratio 
of the true positives and the true negatives to the total number of pixels (the previous sum plus 
false positives and false negatives): 

                          , 

Jaccard coefficient =               , and  

Yule coefficient =                                

With these metrics, it's not necessary to identify separate distinct objects, all pixels identified as 
belonging to the foreground are considered as one object, even if they are not joined. As a result, 
many of the segmentation approaches create multiple disjoint sets of foreground pixels, some of 
which belong to the object, others are artifacts of improper segmentation, which together create 
the one foreground object. These statistics will be reported as a percentage, with 100% a perfect 
match to the ground truth image. 

3.4 Image Test Cases 
This section contains the results of applying the proposed approach to a series of images. The 
images were chosen to high light different challenges associated with image segmentation and to 
demonstrated that the proposed approach has broad application. A qualitative analysis against 
ground truth sets is provided for four of the test images. For the images in figures 1 and 4 the 
ground truth sets  were  created by the author from the gradient information and hand editing to 
remove spurious artifacts, because none were available for these images. For figures 12 and 13, 
ground truth sets  are provided along with the images. The proposed method was compared 
against methods readily available from free, open source applications such as OpenCV and 
ImageJ. 

The image shown in Figure 1  below represents the kind of challenge this algorithm was meant to 
address, it's a large "T" shaped object which was been obliquely illuminated, making the selection 
of a single threshold for segmentation impossible: 

 
Obliquely illuminated "T"[28] 

 
Image Histogram 

 

FIGURE 1 
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From the histogram for the image in Figure 1, it can be seen that the distribution is not bimodal in 
nature, illustrating the difficulty with choosing a single global threshold for performing 
segmentation. 
 
To illustrate this, the results of a fixed thresholding using Otsu's method, as detailed in the 
ImageJ documentation for global auto thresholding[16], are shown below in Figure 3: 

 
 

FIGURE 2: Ground Truth Image. 

 
 

FIGURE 3: Otsu's method. 

 
Because a single threshold will not adequately segment this image, local or adaptive thresholding 
techniques must be applied. For such a large object, adaptive thresholding using a neighborhood 
operator, even a large one, sometimes results in the interior of object missing, or unwanted 
artifacts are introduces.  
 
The results of several different adaptive thresholding methods, indicated beneath each picture, 
are presented below in Figure 4. All of the approaches illustrated below are based on applying 
statistical methods over a region local to each point in the image. Typically the region is either 
square or circular in shape, with it' s size being determined by the dimensions of the objects to be 
identified. As a result, a priori knowledge of the image is required for proper segmentation. 
Because the object here to be identified (the black "T") is quite large, a large window is required 
for detection, otherwise only the border of the object will be found and the interior will be missing. 

 
Bernsen, Radius = 75 C=15 

 
Mean, 75x75 window C=4 
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MidGrey, 75x75 Window C=15 

 
Niblack, 75x75 C=4 

 
Phansalker, Radius=75 

 
Sauvola, 101x101, k = 0.15 

 

FIGURE 4 

 
Note that except for Sauvola and the MidGrey methods, none of these techniques provides an 
adequate segmentation of the black "T" from the obliquely illuminated background, a detailed 
quantitative analysis will follow. In addition to local adaptive techniques shown above the method 
of Chow and Kaneko is also considered. To review, in this approach a grid of fixed size is defined 
and the local threshold is calculated for each grid using an automatic thresholding technique such 
as Otsu's method (for example). For any given point in the image a threshold is calculated by 
interpolating over the threshold values calculated in each grid. Figure 5 shows the results of 
segmentation, along with the threshold map, for grid sizes of 8 and 16 respectively: 
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Threshold Map, Block Size 8 Binary Image, Block Size 8 

Threshold Map, Block Size 16 Binary Image, Block Size 16 
 

FIGURE 5 

 
With a block size of 16, the general outline of the object is captured. Note that just as with local 
adaptive methods, the success of segmentation is highly dependent upon the choice of block 
size, which needs to determined from information about the image before segmentation can be 
performed. 

To applying the technique detailed in this paper it is necessary to first chose values for  ,      , 
and  . For the first set    ,         , and      , for the second set      ,         , and 

     . The results of segmenting the image in Figure 1 with these two different sets of values 
are present in table form in Figure 6 and Figure 7. From first to last, the images are as follows: 
The first image shows the active surface resulting from optimization; The second image shows 
the difference between the original image and the optimized image offset by 127 to create a 
grayscale image. The third and fourth images show the results of segmentation along with an 
overlay on the original image of the detected object's boundary (outlined in black).  
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Active surface with    ,          Difference offset by 127 

Segmentation with       Object Boundary Outline Overlay 

 

FIGURE 6: The results of segmenting with    ,         , and      . 

 
Next, with different parameters: 

Active surface with      ,          Difference offset by 127 
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Segmentation with       Object Boundary Outline Overlay 

 
FIGURE 7: The results of segmenting with      ,         , and      . 

 
Note from the images in Figure 6 and Figure 7 that the method detailed herein properly 
segmented the object of interest (the black "T") from the obliquely illuminated background without 
the introduction of additional unwanted artifacts whereas most standard methods failed to do so. 
Compare the active surface of the proposed method with the threshold map created using the 
method of Chow and Kaneko and note that it much more closely follows the intensity profile of the 
original image, allowing for proper segmentation. As shown above, segmentation with the 
proposed method can be done with different values of  , with δ adjusted accordingly, 
demonstrating the algorithms relative insensitivity to starting parameters. The overall affect of 
decreasing   is to increase the smoothing of the optimized image, with sufficiently small values of 
  resulting in a nearly uniform image at a single gray value, and segmentation is then very close 
to the segmentation achieved with global thresholding methods. The accuracy results for all the 
methods surveyed, as illustrated above and compared against the ground truth image shown in 
Figure 2, are shown below in Table 1: 
 

Algorithm IoU PA Jaccard Yule 

Bernsen 0.6098 0.8379 0.6098 0.6097 

Chow and Kaneko: BS=8 0.9225 0.9787 0.9226 0.9233 

Chow and Kaneko: BS=16 0.728 0.9053 0.7281 0.7282 

C-Mean 0.865 0.961 0.8651 0.8709 

MidGrey 0.9578 0.9889 0.9579 0.9627 

Niblack 0.7405 0.9111 0.7406 0.7407 

Phansalker 0.8277 0.9473 0.8277 0.8284 

Sauvola 0.9646 0.9908 0.9647 0.9686 

Otsu 0.3692 0.5813 0.3692 0.3488 

Proposed:  =4, γ=3, δ=0 0.9886 0.9971 0.9887 0.9944 

Proposed:  =1/9, γ=3, δ=9 0.9912 0.9978 0.9913 0.9916 
 

TABLE 1 

 
Note that of the methods analyzed, the proposed approach performed best overall metrics, 
although good matching was also achieved with the MidGrey algorithm and Sauvola's method. 
Note that the IoU, Jaccard, and Yule metrics yield very similar results, with PA being higher 
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because of the influence of the TN pixels, which typically correspond to large areas of the image 
which are of no interest. 
 
Next, consider the highly textured image in Figure 8, along with it' s segmentation using Otsu's 
method: 

 
Original Image[34] 

 
Segmented using Otsu's method 

 

FIGURE 8: Image Segmented using Otsu's Method. 

 
The affects of segmenting the image from Figure 8 with different values of  ,     , and δ are 
shown below in Figure 9: 

 
Active Surface with      ,         

 
Image segmentation with     
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Active Surface with       ,         

 
Image segmentation with     

 
FIGURE 9: Active surface and segmentation with different values of  ,     , and δ. 

 
As mentioned earlier, decreasing values of   and increasing values of     result in greater 

smoothing in the optimized image. Note that smoothing with       ,         results in a 

nearly uniform active surface, and segmenting with     results in an output very similar to that 
obtained using Otsu's method. 
 
Figure 10 presents the results of segmenting a document, a Sudoku puzzle[24], using several 
different methods, including the proposed approach. From first to last, the images are as follows: 
The original image is first, the second shows segmentation using Otsu's method. The third image 
shows segmentation using C-Mean adaptive thresholding with a 15x15 window and C=8, and the 
final image shows the results of segmentation with the proposed method using with    ,      
    and    , note that these are the similar to the settings used for the large "T", illustrating the 
flexibility of this approach and it's ability to segment very different objects using the similar 
parameters The performance of the proposed approach compares well with the C-Mean method, 
but in addition to properly segmenting the text, it preserves the black box surrounding "SUDOKU" 
near the top and the small black box at the bottom of the image. 



Brian Whalen 

International Journal of Image Processing (IJIP), Volume (13) : Issue (5) : 2019 92 

 
Original Image 

 
Otsu's Method 

 
C-Mean with 15x15 window C = 8 

 
Proposed Method   = 4, γ = 3, δ = 2 

 
FIGURE 10: Segmentation of Sudoku Puzzle. 

 
Figure 11 presents the results of segmenting an image of a non-uniformly illuminated object [28] 
using several different methods. The original image is first, the second image shows the ground 
truth image, and the remaining images shows segmentation using various other methods. Note 
that while in all cases the object is properly segmented, additional artifacts are also identified 
because of the uneven illumination (a situation significantly mitigated using Li's minimum cross 
entropy, as shown in the fifth image of this sequence, see Li[8] and also N. Pal[26] for 
discussions of this method). Results are also presented using Minimum error thresholding [12], 
and the MidGrey approach along with the method of Chow and Kaneko. 
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Original Image[28] 

 
Ground Truth 

 
Otsu's Method 

 
Minimum Error Thresholding 

 
Li's Minimum Cross Entropy 

 
MidGrey, 75x75 Window C=15 
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Chow and Kaneko, Map with Block Size = 64 

 
Chow and Kaneko, Block Size = 64 

 
The next four images show the results of processing the image using the proposed approach: 
 

 
Active Surface with      ,         

 
Difference offset by 127 

 
Image segmentation with     

 
Object Boundary Outline Overlay 

 
FIGURE 11 

 
The first image is of the active surface created by smoothing the original image with   
   ,        . The second image (proceeding form left to right, top to bottom) shows the 
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difference between the original image and the active surface, offset by 127 so the results can be 
displayed. Note that the non-uniformity has been removed, allowing the object of interest to be 
properly segmented from the background without any additional artifacts being created, as shown 
in the third image. The forth image shows the outline of the segmented object over-laid on the 
original image. Metrics for all approaches are shown below in Table 2: 
 

Algorithm IoU PA Jaccard Yule 

Otsu 0.8024 0.9684 0.8024 0.803 

Li's Minimum Cross Entropy 0.9561 0.9941 0.9561 0.9614 

Minimum Error 0.3328 0.7425 0.3328 0.3328 

MidGrey 0.9887 0.9985 0.9887 0.9948 

Chow and Kaneko: BS=64 0.5564 0.8976 0.5564 0.5564 

Proposed:  =1/9, γ=10, δ=0 0.9939 0.9992 0.9939 0.9952 
 

TABLE 2 

 
Note that the proposed method performed best amongst all the methods considered. 
 
The following two images are taken from a public single object database made available online by 
the Computer Science and Applied Mathematics department of the Weizmann institute of 
Science[6]. Ground truth segmentations are provided with each image in the database. 

Figure 12 shows the results of using several algorithms, in addition to the proposed approach, to 
segment the image of a helicopter: 

 
Original Image[6] 

 
Ground Truth 
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Li's Method 

 
Maximum Entropy 

 
Reny Entropy 

 
Yen 

 
Triangle 

 
Proposed Method  =1/9, γ=10, δ=62 

 

FIGURE 12 
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Metrics for the tested approaches are shown below in Table 3: 
 

Algorithm IoU PA Jaccard Yule 

Li's Minimum Cross Entropy 0.7533 0.9878 0.7533 0.9874 

Reny Entropy 0.9381 0.9968 0.9381 0.9485 

Maximum Entropy 0.9321 0.9964 0.9321 0.9406 

Yen 0.9321 0.9964 0.9321 0.9406 

Triangle 0.9321 0.9964 0.9321 0.9406 

Proposed:  =1/9, γ=10, δ=62 0.9347 0.9967 0.9347 0.9596 
 

TABLE 3 

 
All methods listed, including the proposed approach, provide a good segmentation of the original 
image, as defined by the ground truth set. 
 
Figure 13 shows a silhouetted image of a chain against a background of sky. The results of using 
several algorithms, including the proposed approach, to segment the image are shown below: 

 
Original Image[6] 

 
Ground Truth Image 

 
Huang's Method Minimum Cross Entropy 



Brian Whalen 

International Journal of Image Processing (IJIP), Volume (13) : Issue (5) : 2019 98 

 
Triangle Method 

 
Proposed Method  =1/9, γ=10, δ=34 

 

FIGURE 13 

 
Metrics for the tested approaches are shown below in Table 4: 
 

Algorithm IoU PA Jaccard Yule 

Huang 0.8983 0.9753 0.8983 0.9685 

Li's Minimum Cross Entropy 0.8992 0.9756 0.8992 0.9688 

Triangle 0.8502 0.9637 0.8502 0.9543 

Proposed:  =1/9, γ=10, δ=34 0.9195 0.9805 0.9195 0.9749 
 

TABLE 4 

 
The proposed approached performed better overall than the other approaches. In both of the 
above examples more algorithms were considered than presented, as those which did poorly by 
either failing to segment the object from the background or by including other artifacts than the 
object, were excluded altogether. Upon reviewing the metrics, it can be seen that only the 
Triangle method and Li's Minimum Cross Entropy, in addition to the proposed approach, were 
able to provide adequate segmentation on the two sets of images, with the proposed approach 
performing better than each in both cases. Below in Table 5 is a summary, the top three rows are 
for Figure 12, the bottom three for Figure 13: 

Algorithm IoU PA Jaccard Yule 

Li's Minimum Cross Entropy 0.7533 0.9878 0.7533 0.9874 

Triangle 0.9321 0.9964 0.9321 0.9406 

Proposed:  =1/9, γ=10, δ=62 0.9347 0.9967 0.9347 0.9596 

Li's Minimum Cross Entropy 0.8992 0.9756 0.8992 0.9688 

Triangle 0.8502 0.9637 0.8502 0.9543 

Proposed:  =1/9, γ=10, δ=34 0.9195 0.9805 0.9195 0.9749 
 

TABLE 5 

 
4. ADVANTAGES AND DISADVANTAGES 
The principle advantage of the proposed approach is it's ability to segment large objects, normally 
a challenging task for adaptive thresholding algorithms because of the need to select a window 
size large enough to cover the object but small enough to allow it to be separated properly from 
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the background without crearting artifacts or holes within the object itself. The proposed approach 
handles large uniform areas (even areas were illumination is uneven, as shown in particular with 
regard to the image in Figure 1) without the creation of ghost artifacts because of it's contour 
following properties. These help the algorithm create a thresholding surface which parallels that 
of the image in nearly uniform regions, with optimization only being performed in transitional 
areas were the gradient is high. Another advantage is that no a-prior knowledge about the object 
to be segmented is required. For local neighborhood based techniques optimal segmentation 
requires that the selection of the window size be determined by the size of the object to be 
detected, thus requiring some understanding of the scene. The same holds true for thresholding 
methods which partition the image into rectangular regions in order to find local thresholds over 
which to interpolate. Note that for the object in Fig.1, using different block sizes with the method 
of Chow and Kaneko resulted in noticeably different segmentations. With the proposed approach 
knowledge about the image, or the objects to be segmented, is not necessary; most of the 
algorithm parameters are determined from the gradient information alone, the entire process 
being determined by several parameters, values which typically generalize well. Only      is best 
chosen on an image by image basis and this can be chosen directly from a histogram of the 
gradient. This approach also offers the advantage of simplicity over techniques which require the 
identification of edges, processing windows and associated parameters, or interpolating functions 
along with sets of interpolating points. Problems associated with the behavior of interpolating 
functions in areas away from the interpolating points, along with problems near the edges of the 
image, are also avoided resulting in an algorithm which is simple to use. 

The primary disadvantage of the proposed approach is processing speed. The proposed 
approach is computationally intensive, since every point in the image is represented by an 
equation, all of which need to be optimized simultaneously. Even for a modest sized image of 
512x512 a total of 262144 equations are required, and most cameras have much larger array 
sizes. For example, the image in Figure 1, with a size of 496 by 380, took a total of 8.825 
seconds to segment. Another disadvantage is the need to specify three parameters for 
segmentation, most algorithms require only one or two. 

5. FUTURE DEVELOPMENT 
Future efforts will focus on speed improvements and automated parameter generation. A 
conjugate gradient method is currently used to iteratively determine the solution, investigation into 
other iterative approaches, such as Guass-Seidel, should be conducted to determine if 
processing can be speed up.  In addition to speed improvements, methods for automatically 
generating the parameters needed by the proposed approach should be developed. In particular, 
as mentioned above, the value for      can possibly be determined from a histogram of the 
gradient of the image by noting, as is done with other approaches, that high gradient values are 
typically associated with the edges of objects to be detected. The value for δ can also be 
determined automatically by applying global thresholding techniques to the histogram obtained 
from the difference between the original image and the image obtained from smoothing using the 
proposed method. Examples of this image transformation are shown in Figures 6, 7 and 9. The 
results of this image transformation for the object shown in Figure 1 are shown below, they are 
similar to those shown in Figure 6, except the transformed image has histogram equalization 
applied to increase it's dynamic range: 
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Original Image 

 
Transformed Image 

 

FIGURE 14 

 
Note that the transformed image retains the subtleties and nuances of the original, including the 
shadow cast by the part. At this point, it should be possible to segment the transformed image 
using a variety of global segmentation techniques. This approach would eliminate the need to 
determine the value for δ explicitly. These efforts should result in an improved version of the 
proposed algorithm which is faster and easier to use. 

 
6. CONCLUSION 
In conclusion, a method has been presented for performing image segmentation based upon a 
gradient minimization strategy which successfully creates an smooth surface that can be used for 
adaptive thresholding and image segmentation. Comparisons with commonly used approaches 
against test cases with ground truth segmentations indicated comparable or superior results, 
while retaining the advantage of simplicity to use.  
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